Application of the Cell Perturbation Method to Large-Eddy Simulations of a Real Urban Area

Gwang-Jin Lee Department of Mathematics, Yonsei University, Seoul, South Korea

Search for other papers by Gwang-Jin Lee in
Current site
Google Scholar
PubMed
Close
,
Domingo Muñoz-Esparza National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Domingo Muñoz-Esparza in
Current site
Google Scholar
PubMed
Close
,
Chaeyeon Yi Department of Environmental Science, Hankuk University of Foreign Studies, Gyeonggi-do, South Korea

Search for other papers by Chaeyeon Yi in
Current site
Google Scholar
PubMed
Close
, and
Hi Jun Choe Department of Mathematics, Yonsei University, Seoul, South Korea

Search for other papers by Hi Jun Choe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

With the continuous increase in computing capabilities, large-eddy simulation (LES) has recently gained popularity in applications related to flow, turbulence, and dispersion in the urban atmospheric boundary layer (ABL). Herein, we perform high-resolution building-scale LES over the Seoul, South Korea, city area to investigate the impact of inflow turbulence on the resulting turbulent flow field in the urban ABL. To that end, LES using the cell perturbation method for inflow turbulence generation is compared to a case where no turbulence fluctuations in the incoming ABL are present (unperturbed case). Validation of the model results using wind speed and wind direction observations at 3 m above ground level reveals minimal differences irrespective of the presence of incoming ABL turbulence. This is due to the high density of building structures present at the surface level that create shear instabilities in the flow field and therefore induce local turbulence production. In the unperturbed case, turbulent fluctuations are found to slowly propagate in the vertical direction with increasing fetch from the inflow boundaries, creating an internal boundary layer that separates the turbulent region near the building structures and the nonturbulent flow aloft that occupies the rest of the ABL. Analysis of turbulence quantities including energy spectra, velocity correlations, and passive scalar fluxes reveals significant underpredictions that rapidly grow with increasing height within the ABL. These results demonstrate the need for realistic inflow turbulence in building-resolving LES modeling to ensure proper interactions within the ABL.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gwang-Jin Lee, gwangjin@yonsei.ac.kr

Abstract

With the continuous increase in computing capabilities, large-eddy simulation (LES) has recently gained popularity in applications related to flow, turbulence, and dispersion in the urban atmospheric boundary layer (ABL). Herein, we perform high-resolution building-scale LES over the Seoul, South Korea, city area to investigate the impact of inflow turbulence on the resulting turbulent flow field in the urban ABL. To that end, LES using the cell perturbation method for inflow turbulence generation is compared to a case where no turbulence fluctuations in the incoming ABL are present (unperturbed case). Validation of the model results using wind speed and wind direction observations at 3 m above ground level reveals minimal differences irrespective of the presence of incoming ABL turbulence. This is due to the high density of building structures present at the surface level that create shear instabilities in the flow field and therefore induce local turbulence production. In the unperturbed case, turbulent fluctuations are found to slowly propagate in the vertical direction with increasing fetch from the inflow boundaries, creating an internal boundary layer that separates the turbulent region near the building structures and the nonturbulent flow aloft that occupies the rest of the ABL. Analysis of turbulence quantities including energy spectra, velocity correlations, and passive scalar fluxes reveals significant underpredictions that rapidly grow with increasing height within the ABL. These results demonstrate the need for realistic inflow turbulence in building-resolving LES modeling to ensure proper interactions within the ABL.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gwang-Jin Lee, gwangjin@yonsei.ac.kr
Save
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, J. Chang, Ed., Vol. 17, Elsevier, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4.

    • Crossref
    • Export Citation
  • Ayachit, U., 2015: The ParaView Guide: A Parallel Visualization Application. Kitware, Inc., 276 pp.

  • Chen, G., X. Zhu, W. Sha, T. Iwasaki, H. Seko, K. Saito, H. Iwai, and S. Ishii, 2015: Toward improved forecasts of sea-breeze horizontal convective rolls at super high resolutions. Part I: Configuration and verification of a Down-Scaling Simulation System (DS3). Mon. Wea. Rev., 143, 18491872, https://doi.org/10.1175/MWR-D-14-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Sánchez, C., G. Van Tendeloo, and C. Gorlé, 2017: Quantifying inflow uncertainties in RANS simulations of urban pollutant dispersion. Atmos. Environ., 161, 263273, https://doi.org/10.1016/j.atmosenv.2017.04.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Sánchez, C., J. van Beeck, and C. Gorlé, 2018: Predictive large eddy simulations for urban flows: Challenges and opportunities. Build. Environ., 139, 146156, https://doi.org/10.1016/j.buildenv.2018.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gronemeier, T., A. Inagaki, M. Gryschka, and M. Kanda, 2015: Large-eddy simulation of an urban canopy using a synthetic turbulence inflow generation method. J. Japan Soc. Civil Eng., 71B, 4348, https://doi.org/10.2208/jscejhe.71.I_43.

    • Search Google Scholar
    • Export Citation
  • Gronemeier, T., S. Raasch, and E. Ng, 2017: Effects of unstable stratification on ventilation in Hong Kong. Atmosphere, 8, 168, https://doi.org/10.3390/atmos8090168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., O. R. Hansen, and S. Dharmavaram, 2004: FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations. Atmos. Environ., 38, 46754687, https://doi.org/10.1016/j.atmosenv.2004.05.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harlow, F. H., and J. E. Welch, 1965: Numerical calculation of time dependent viscous incompressible flow of fluid with free surface. Phys. Fluids, 8, 21822189, https://doi.org/10.1063/1.1761178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, J. D., 2015: Wind Loading of Structures. CRC press, 58 pp.

  • Hunter, J. D., 2007: Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9, 9095, https://doi.org/10.1109/MCSE.2007.55.

  • Jähn, M., D. Muñoz-Esparza, F. Chouza Keil, O. Reitebuch, O. Knoth, M. Haarig, and A. Ansmann, 2016: Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations. Atmos. Chem. Phys., 16, 651674, https://doi.org/10.5194/acp-16-651-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, P., Z. Wen, W. Sha, and G. Chen, 2017: Interaction between turbulent flow and sea-breeze front over urban-like coast in large-eddy simulation. J. Geophys. Res. Atmos., 122, 52985315, https://doi.org/10.1002/2016JD026247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kataoka, H., and M. Mizuno, 2002: Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence. Wind Struct., 5, 379392, https://doi.org/10.12989/was.2002.5.2_3_4.379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, G.-H., Y.-G. Lee, D.-G. Lee, and B.-J. Kim, 2016: Analyzing the cooling effect of urban green areas by using the multiple observation network in the Seonjeongneung region of Seoul, Korea. J. Environ. Sci. Int., 25, 14751484, https://doi.org/10.5322/JESI.2016.25.11.1475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letzel, M. O., M. Krane, and S. Raasch, 2008: High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ., 42, 87708784, https://doi.org/10.1016/j.atmosenv.2008.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund, T. S., X. Wu, and K. D. Squires, 1998: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys., 140, 233258, https://doi.org/10.1006/jcph.1998.5882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. K., and S. T. Chan, 2007: Consequences of urban stability conditions for computational fluid dynamics simulations of urban dispersion. J. Appl. Meteor. Climatol., 46, 10801097, https://doi.org/10.1175/JAM2514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2012: An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF model. Mon. Wea. Rev., 140, 39363955, https://doi.org/10.1175/MWR-D-11-00311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., and Coauthors, 2015: The parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev., 8, 25152551, https://doi.org/10.5194/gmd-8-2515-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayor, S. D., P. R. Spalart, and G. J. Tripoli, 2002: Application of a perturbation recycling method in the large-eddy simulation of a mesoscale convective internal boundary layer. J. Atmos. Sci., 59, 23852395, https://doi.org/10.1175/1520-0469(2002)059<2385:AOAPRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45, 35733587, https://doi.org/10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., and B. Kosović, 2018: Generation of inflow turbulence in large-eddy simulations of non-neutral atmospheric boundary layers with the cell perturbation method. Mon. Wea. Rev., 146, 18891909, https://doi.org/10.1175/MWR-D-18-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. Mirocha, and J. van Beeck, 2014: Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer Meteor., 153, 409440, https://doi.org/10.1007/s10546-014-9956-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. van Beeck, and J. Mirocha, 2015: A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers. Phys. Fluids, 27, 035102, https://doi.org/10.1063/1.4913572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., J. K. Lundquist, J. A. Sauer, B. Kosović, and R. R. Linn, 2017: Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies. J. Adv. Model. Earth Syst., 9, 15721594, https://doi.org/10.1002/2017MS000960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-B., J.-J. Baik, and S.-H. Lee, 2015: Impacts of mesoscale wind on turbulent flow and ventilation in a densely built-up urban area. J. Appl. Meteor. Climatol., 54, 811824, https://doi.org/10.1175/JAMC-D-14-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M., and A. S. Thom, 1981: Turbulence in and above plant canopies. Annu. Rev. Fluid Mech., 13, 97129, https://doi.org/10.1146/annurev.fl.13.010181.000525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saiki, E. M., C.-H. Moeng, and P. P. Sullivan, 2000: Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteor., 95, 130, https://doi.org/10.1023/A:1002428223156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., R. Sharman, J. Weil, S. G. Perry, D. Heist, and G. Bowker, 2007: Building resolving large-eddy simulations and comparison with wind tunnel experiments. J. Comput. Phys., 227, 633653, https://doi.org/10.1016/j.jcp.2007.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, J. H., 1980: Low-storage Runge–Kutta schemes. J. Comput. Phys., 35, 4856, https://doi.org/10.1016/0021-9991(80)90033-9.

  • Xie, Z.-T., and I. P. Castro, 2008: Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow Turbul. Combust., 81, 449470, https://doi.org/10.1007/s10494-008-9151-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, C.-Y., S. M. An, K.-R. Kim, Y.-J. Choi, and D. Scherer, 2012: Improvement of air temperature analysis by precise spatial data on a local-scale—A case study of Eunpyeong New Town in Seoul. J. Korean Assoc. Geogr. Inf. Stud., 15, 144158, https://doi.org/10.11108/kagis.2012.15.1.144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, T., T. Takemi, and M. Horiguchi, 2018: Large-eddy-simulation study of the effects of building-height variability on turbulent flows over an actual urban area. Bound.-Layer Meteor., 168, 127153, https://doi.org/10.1007/s10546-018-0344-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1524 843 117
PDF Downloads 853 133 18