Expanding the Goddard CSH Algorithm for GPM: New Extratropical Retrievals

W.-K. Tao Mesoscale Atmospheric Processes Laboratory, NASA/Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by W.-K. Tao in
Current site
Google Scholar
PubMed
Close
,
T. Iguchi Mesoscale Atmospheric Processes Laboratory, NASA/Goddard Space Flight Center, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by T. Iguchi in
Current site
Google Scholar
PubMed
Close
, and
S. Lang Mesoscale Atmospheric Processes Laboratory, NASA/Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by S. Lang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Goddard convective–stratiform heating (CSH) algorithm has been used to retrieve latent heating (LH) associated with clouds and cloud systems in support of the Tropical Rainfall Measuring Mission and Global Precipitation Measurement (GPM) mission. The CSH algorithm requires the use of a cloud-resolving model to simulate LH profiles to build lookup tables (LUTs). However, the current LUTs in the CSH algorithm are not suitable for retrieving LH profiles at high latitudes or winter conditions that are needed for GPM. The NASA Unified-Weather Research and Forecasting (NU-WRF) Model is used to simulate three eastern continental U.S. (CONUS) synoptic winter and three western coastal/offshore events. The relationship between LH structures (or profiles) and other precipitation properties (radar reflectivity, freezing-level height, echo-top height, maximum dBZ height, vertical dBZ gradient, and surface precipitation rate) is examined, and a new classification system is adopted with varying ranges for each of these precipitation properties to create LUTs representing high latitude/winter conditions. The performance of the new LUTs is examined using a self-consistency check for one CONUS and one West Coast offshore event by comparing LH profiles retrieved from the LUTs using model-simulated precipitation properties with those originally simulated by the model. The results of the self-consistency check validate the new classification and LUTs. The new LUTs provide the foundation for high-latitude retrievals that can then be merged with those from the tropical CSH algorithm to retrieve LH profiles over the entire GPM domain using precipitation properties retrieved from the GPM combined algorithm.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Wei-Kuo Tao, wei-kuo.tao-1@nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

The Goddard convective–stratiform heating (CSH) algorithm has been used to retrieve latent heating (LH) associated with clouds and cloud systems in support of the Tropical Rainfall Measuring Mission and Global Precipitation Measurement (GPM) mission. The CSH algorithm requires the use of a cloud-resolving model to simulate LH profiles to build lookup tables (LUTs). However, the current LUTs in the CSH algorithm are not suitable for retrieving LH profiles at high latitudes or winter conditions that are needed for GPM. The NASA Unified-Weather Research and Forecasting (NU-WRF) Model is used to simulate three eastern continental U.S. (CONUS) synoptic winter and three western coastal/offshore events. The relationship between LH structures (or profiles) and other precipitation properties (radar reflectivity, freezing-level height, echo-top height, maximum dBZ height, vertical dBZ gradient, and surface precipitation rate) is examined, and a new classification system is adopted with varying ranges for each of these precipitation properties to create LUTs representing high latitude/winter conditions. The performance of the new LUTs is examined using a self-consistency check for one CONUS and one West Coast offshore event by comparing LH profiles retrieved from the LUTs using model-simulated precipitation properties with those originally simulated by the model. The results of the self-consistency check validate the new classification and LUTs. The new LUTs provide the foundation for high-latitude retrievals that can then be merged with those from the tropical CSH algorithm to retrieve LH profiles over the entire GPM domain using precipitation properties retrieved from the GPM combined algorithm.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Wei-Kuo Tao, wei-kuo.tao-1@nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save
  • Berg, W., T. L’Ecuyer, and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, https://doi.org/10.1175/2009JAMC2330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-1999-10460, Vol. 15, 38 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.

  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, and M. M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-2001-104606, Vol. 19, 54 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010072848.pdf.

  • Das, S., D. Johnson, and W.-K. Tao, 1999: Single-column and cloud ensemble model simulations of TOGA COARE convective systems. J. Meteor. Soc. Japan, 77, 803826, https://doi.org/10.2151/jmsj1965.77.4_803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., S. Y. Matrosov, C. R. Williams, and E. J. Walsh, 2018: Estimation of rain rate from airborne Doppler W-band radar in CalWater-2. J. Atmos. Oceanic Technol., 35, 593608, https://doi.org/10.1175/JTECH-D-17-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45, 416433, https://doi.org/10.1175/JAM2360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, C.-L. Shie, T. L’Ecuyer, and W.-K. Tao, 2009: Combining satellite microwave radiometer and radar observations to estimate atmospheric latent heating profiles. J. Climate, 22, 63566376, https://doi.org/10.1175/2009JCLI3020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396409, https://doi.org/10.2151/jmsj1965.60.1_396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huaman, L., and C. Schumacher, 2018: Assessing the vertical latent heating structure of the east Pacific ITCZ using the CloudSat CPR and TRMM PR. J. Climate, 31, 25632577, https://doi.org/10.1175/JCLI-D-17-0590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2012a: Numerical analysis using WRF-SBM for the cloud microphysical structures in the C3VP field campaign: Impacts of supercooled droplets and resultant riming on snow microphysics. J. Geophys. Res., 117, D23206, https://doi.org/10.1029/2012JD018101.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Matsui, A. Tokay, P. Kollias, and W.-K. Tao, 2012b: Two distinct modes in one-day rainfall event during MC3E field campaign: Analyses of disdrometer observations and WRF-SBM simulation. Geophys. Res. Lett., 39, L24805, https://doi.org/10.1029/2012GL053329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2014: WRF-SBM simulations of melting layer structure in mixed-phase precipitation events observed during LPVEx. J. Appl. Meteor. Climatol., 53, 27102731, https://doi.org/10.1175/JAMC-D-13-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2017: Sensitivity of CONUS summer rainfall to the selection of cumulus parameterization schemes in NU-WRF seasonal simulations. J. Hydrometeor., 18, 16891706, https://doi.org/10.1175/JHM-D-16-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. E., W.-K. Tao, J. Simpson, and C.-H. Sui, 2002: A study of the response of deep tropical clouds to large-scale thermodynamic forcing. Part I: Modeling strategies and simulations of TOGA COARE convective systems. J. Atmos. Sci., 59, 34923518, https://doi.org/10.1175/1520-0469(2002)059<3492:ASOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112, 15901601, https://doi.org/10.1175/1520-0493(1984)112<1590:PTHAMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. E., and W.-K. Tao, 2018: The next-generation Goddard convective–stratiform heating algorithm: New tropical and warm-season retrievals for GPM. J. Climate, 31, 59976026, https://doi.org/10.1175/JCLI-D-17-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. E., W.-K. Tao, J.-D. Chern, D. Wu, and X. Li, 2014: Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. J. Atmos. Sci., 71, 35833612, https://doi.org/10.1175/JAS-D-13-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., D. E. Waliser, R. Ferraro, T. Iguchi, C. D. Peters-Lidard, B. Tian, P. C. Loikith, and D. B. Wright, 2017: Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASA-Unified WRF. J. Geophys. Res. Atmos., 122, 73717384, https://doi.org/10.1002/2017JD026564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2018: Evolution of precipitation structure during the November DYNAMO MJO event: Cloud-resolving model intercomparison and cross validation using radar observations. J. Geophys. Res. Atmos., 123, 35303555, https://doi.org/10.1002/2017JD027775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., and J. P. Jacob, 2014: User guide: Goddard radiation scheme for NU-WRF, version 2014. NASA Goddard Space Flight Center Doc., 4 pp., https://modelingguru.nasa.gov/servlet/JiveServlet/previewBody/2547-102-1-6242/UserGuide_Radiation2014.pdf.

  • Matsui, T., S. Q. Zhang, S. E. Lang, W. K. Tao, C. Ichoku, and C. D. Peters-Lidard, 2019: Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African monsoon simulations. Climate Dyn., https://doi.org/10.1007/s00382-018-4187-2, in press.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, E. L., and T. S. L’Ecuyer, 2018: Global character of latent heat release in oceanic warm rain systems. J. Geophys. Res. Atmos., 123, 47974817, https://doi.org/10.1002/2017JD027844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, E. L., T. S. L’Ecuyer, S. M. Saleeby, W. Berg, S. R. Herbener, and S. C. van den Heever, 2016: Toward an algorithm for estimating latent heat release in warm rain systems. J. Atmos. Oceanic Technol., 33, 13091329, https://doi.org/10.1175/JTECH-D-15-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2015: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environ. Modell. Software, 67, 149159, https://doi.org/10.1016/j.envsoft.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2016: CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating U.S. West Coast precipitation in a changing climate. Bull. Amer. Meteor. Soc., 97, 12091228, https://doi.org/10.1175/BAMS-D-14-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, S., and A. Noda, 2001: Retrieval of latent heating profiles from TRMM radar data. Proc. 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 6.3, http://ams.confex.com/ams/30radar/techprogram/paper_21763.htm.

  • Shi, J. J., and Coauthors, 2010: Microphysical properties of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, https://doi.org/10.1175/2010JAMC2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2014: Implementation of an aerosol–cloud–microphysics–radiation coupling into the NASA Unified WRF: Simulation results for the 6–7 August 2006 AMMA special observing period. Quart. J. Roy. Meteor. Soc., 140, 21582175, https://doi.org/10.1002/qj.2286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W.-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113, https://doi.org/10.1175/1520-0450(2004)043<1095:SROLHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W.-K. Tao, and C.-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor., 46, 10981124, https://doi.org/10.1175/JAM2510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, and W.-K. Tao, 2008: Spectral retrieval of latent heating profiles from TRMM PR data. Part III: Estimating apparent moisture sink profiles over tropical oceans. J. Appl. Meteor. Climatol., 47, 620640, https://doi.org/10.1175/2007JAMC1738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, S. Kida, W.-K. Tao, X. Zeng, and T. L’Ecuyer, 2009: Spectral retrieval of latent heating profiles from TRMM PR data. Part IV: Comparisons of lookup tables from two- and three-dimensional simulations. J. Climate, 22, 55775594, https://doi.org/10.1175/2009JCLI2919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J. Simpson, S. Lang, M. McCumber, R. Adler, and R. Penc, 1990: An algorithm to estimate the heating budget from vertical hydrometeor profiles. J. Appl. Meteor., 29, 12321244, https://doi.org/10.1175/1520-0450(1990)029<1232:AATETH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., S. Lang, J. Simpson, and R. Adler, 1993: Retrieval algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. J. Meteor. Soc. Japan, 71, 685700, https://doi.org/10.2151/jmsj1965.71.6_685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., S. Lang, J. Simpson, W. S. Olson, D. Johnson, B. Ferrier, C. Kummerow, and R. Adler, 2000: Retrieving vertical profiles of latent heat release in TOGA COARE convective systems using a cloud resolving model, SSM/I and radar data. J. Meteor. Soc. Japan, 78, 333355, https://doi.org/10.2151/jmsj1965.78.4_333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2001: Retrieved vertical profiles of latent heating release using TRMM rainfall products for February 1998. J. Appl. Meteor., 40, 957982, https://doi.org/10.1175/1520-0450(2001)040<0957:RVPOLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., C.-L. Shie, R. Johnson, S. Braun, J. Simpson, and P. E. Ciesielski, 2003: Convective systems over the South China Sea: Cloud resolving model simulations. J. Atmos. Sci., 60, 29292956, https://doi.org/10.1175/1520-0469(2003)060<2929:CSOTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., D. Johnson, C.-L. Shie, and J. Simpson, 2004: Atmospheric energy budget and large-scale precipitation efficiency of convective systems during TOGA COARE, GATE, SCSMEX and ARM: Cloud-resolving model simulations. J. Atmos. Sci., 61, 24052423, https://doi.org/10.1175/1520-0469(2004)061<2405:TAEBAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87, 15551572, https://doi.org/10.1175/BAMS-87-11-1555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., S. Lang, X. Zeng, S. Shige, and Y. Takayabu, 2010: Relating convective and stratiform rain to latent heating. J. Climate, 23, 18741893, https://doi.org/10.1175/2009JCLI3278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2013: Precipitation intensity and variation during MC3E: A numerical modeling study. J. Geophys. Res. Atmos., 118, 71997218, https://doi.org/10.1002/jgrd.50410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2016a: TRMM latent heating retrieval: Applications and comparison with field campaigns and large-scale analyses. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0013.1.

    • Crossref
    • Export Citation
  • Tao, W.-K., D. Wu, S. Lang, J.-D. Chern, C. Peters-Lidard, A. Fridlind, and T. Matsui, 2016b: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos., 121, 12781305, https://doi.org/10.1002/2015JD023986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., and Coauthors, 2017: Development of a model performance metric and its application to assess summer precipitation over the U.S. Great Plains in downscaled climate simulations. J. Hydrometeor., 18, 27812799, https://doi.org/10.1175/JHM-D-17-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., D. A. Marks, E. Amitai, D. S. Silberstein, B. L. Fisher, A. Tokay, J. Wang, and J. L. Pippitt, 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22, 365380, https://doi.org/10.1175/JTECH1700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., C. Peters-Lidard, W.-K. Tao, and W. Petersen, 2016: valuation of NU-WRF real-time rainfall forecast for IFloodS. J. Hydrometeor., 17, 13171335, https://doi.org/10.1175/JHM-D-15-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. Chu, 1973: Determination of average bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 1999a: Four-dimensional structure of monthly latent heating derived from SSM/I satellite measurements. J. Climate, 12, 10161037, https://doi.org/10.1175/1520-0442(1999)012<1016:FDSOML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 1999b: Moisture budget analysis of TOGA COARE area using SSM/I-retrieved latent heating and large-scale Q2 estimates. J. Atmos. Oceanic Technol., 16, 633655, https://doi.org/10.1175/1520-0426(1999)016<0633:MBAOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2000: Vertical structure and transient behavior of convective–stratiform heating in TOGA COARE from combined satellite–sounding analysis. J. Appl. Meteor., 39, 14911513, https://doi.org/10.1175/1520-0450(2000)039<1491:VSATBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and Coauthors, 2007: Evaluating clouds in long-term cloud-resolving model simulations with observational data. J. Atmos. Sci., 64, 41534177, https://doi.org/10.1175/2007JAS2170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., W.-K. Tao, S. Lang, A. Y. Hou, M. Zhang, and J. Simpson, 2008: On the sensitivity of atmospheric ensembles to cloud microphysics in long-term cloud-resolving model simulations. J. Meteor. Soc. Japan, 86A (Special Issue), 4565, https://doi.org/10.2151/jmsj.86A.45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and Coauthors, 2009: The indirect effect of ice nuclei on atmospheric radiation. J. Atmos. Sci., 66, 4161, https://doi.org/10.1175/2008JAS2778.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., W.-K. Tao, S. Powell, R. Houze Jr., P. Ciesielski, N. Guy, H. Pierce, and T. Matsui, 2013: A comparison of water budgets between clouds from AMMA and TWP-ICE. J. Atmos. Sci., 70, 487503, https://doi.org/10.1175/JAS-D-12-050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S. Q., T. Matsui, S. Cheung, M. Zupanski, and C. Peters-Lidard, 2017: Impact of assimilated precipitation-sensitive radiances on the NU-WRF simulation of the West African Monsoon. Mon. Wea. Rev., 145, 38813900, https://doi.org/10.1175/MWR-D-16-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 888 310 67
PDF Downloads 710 95 3