Severe Hail Fall and Hailstorm Detection Using Remote Sensing Observations

Elisa M. Murillo School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Elisa M. Murillo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7522-2105
and
Cameron R. Homeyer School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Cameron R. Homeyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Severe hail days account for the vast majority of severe weather–induced property losses in the United States each year. In the United States, real-time detection of severe storms is largely conducted using ground-based radar observations, mostly using the operational Next Generation Weather Radar network (NEXRAD), which provides three-dimensional information on the physics and dynamics of storms at ~5-min time intervals. Recent NEXRAD upgrades to higher resolution and to dual-polarization capabilities have provided improved hydrometeor discrimination in real time. New geostationary satellite platforms have also led to significant changes in observing capabilities over the United States beginning in 2016, with spatiotemporal resolution that is comparable to that of NEXRAD. Given these recent improvements, a thorough assessment of their ability to identify hailstorms and hail occurrence and to discriminate between hail sizes is needed. This study provides a comprehensive comparative analysis of existing observational radar and satellite products from more than 10 000 storms objectively identified via radar echo-top tracking and nearly 6000 hail reports during 30 recent severe weather days (2013–present). It is found that radar observations provide the most skillful discrimination between severe and nonsevere hailstorms and identification of individual hail occurrence. Single-polarization and dual-polarization radar observations perform similarly at these tasks, with the greatest skill found from combining both single- and dual-polarization metrics. In addition, revisions to the “maximum expected size of hail” (MESH) metric are proposed and are shown to improve spatiotemporal comparisons between reported hail sizes and radar-based estimates for the cases studied.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elisa M. Murillo, murillem@ou.edu

Abstract

Severe hail days account for the vast majority of severe weather–induced property losses in the United States each year. In the United States, real-time detection of severe storms is largely conducted using ground-based radar observations, mostly using the operational Next Generation Weather Radar network (NEXRAD), which provides three-dimensional information on the physics and dynamics of storms at ~5-min time intervals. Recent NEXRAD upgrades to higher resolution and to dual-polarization capabilities have provided improved hydrometeor discrimination in real time. New geostationary satellite platforms have also led to significant changes in observing capabilities over the United States beginning in 2016, with spatiotemporal resolution that is comparable to that of NEXRAD. Given these recent improvements, a thorough assessment of their ability to identify hailstorms and hail occurrence and to discriminate between hail sizes is needed. This study provides a comprehensive comparative analysis of existing observational radar and satellite products from more than 10 000 storms objectively identified via radar echo-top tracking and nearly 6000 hail reports during 30 recent severe weather days (2013–present). It is found that radar observations provide the most skillful discrimination between severe and nonsevere hailstorms and identification of individual hail occurrence. Single-polarization and dual-polarization radar observations perform similarly at these tasks, with the greatest skill found from combining both single- and dual-polarization metrics. In addition, revisions to the “maximum expected size of hail” (MESH) metric are proposed and are shown to improve spatiotemporal comparisons between reported hail sizes and radar-based estimates for the cases studied.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elisa M. Murillo, murillem@ou.edu
Save
  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), http://www.ejssm.org/ojs/index.php/ejssm/article/view/149/104.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, Y. Kaheil, A. H. Sobel, C. Lepore, S. Nong, and A. Muehlbauer, 2017: An extreme value model for U.S. hail size. Mon. Wea. Rev., 145, 45014519, https://doi.org/10.1175/MWR-D-17-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amburn, S. A., and P. L. Wolf, 1997: VIL density as a hail indicator. Wea. Forecasting, 12, 473478, https://doi.org/10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apke, J. M., J. R. Mecikalski, K. Bedka, E. W. McCaul, C. R. Homeyer, and C. P. Jewett, 2018: Relationships between deep convection updraft characteristics and satellite-based super rapid scan mesoscale atmospheric motion vector–derived flow. Mon. Wea. Rev., 146, 34613480, https://doi.org/10.1175/MWR-D-18-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, https://doi.org/10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bardsley, W. E., 1990: On the maximum observed hailstone size. J. Appl. Meteor., 29, 11851187, https://doi.org/10.1175/1520-0450(1990)029<1185:OTMOHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and J. R. Mecikalski, 2005: Application of satellite-derived atmospheric motion vectors for estimating mesoscale flows. J. Appl. Meteor., 44, 17611772, https://doi.org/10.1175/JAM2264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and K. Khlopenkov, 2016: A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations. J. Appl. Meteor. Climatol., 55, 19832005, https://doi.org/10.1175/JAMC-D-15-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., C. S. Velden, R. A. Petersen, W. F. Feltz, and J. R. Mecikalski, 2009: Comparisons of satellite-derived atmospheric motion vectors, rawinsondes, and NOAA wind profiler observations. J. Appl. Meteor. Climatol., 48, 15421561, https://doi.org/10.1175/2009JAMC1867.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., C. Wang, R. Rogers, L. D. Carey, W. Feltz, and J. Kanak, 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets. Wea. Forecasting, 30, 571590, https://doi.org/10.1175/WAF-D-14-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., E. M. Murillo, C. R. Homeyer, B. Scarino, and H. Mersiovsky, 2018: The above anvil cirrus plume: An important severe weather indicator in visible and infrared satellite imagery. Wea. Forecasting, 33, 11591181, https://doi.org/10.1175/WAF-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and J. W. Leighton, 2012: Creating high-resolution hail datasets using social media and post-storm ground surveys. Electron. J. Severe Storms Meteor., 13, 3245.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Brunner, J. C., S. A. Ackerman, A. S. Bachmeier, and R. M. Rabin, 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22, 853872, https://doi.org/10.1175/WAF1022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capozzi, V., E. Picciotti, V. Mazzarella, F. S. Marzano, and G. Budillon, 2018: Fuzzy-logic detection and probability of hail exploiting short-range X-band weather radar. Atmos. Res., 201, 1733, https://doi.org/10.1016/j.atmosres.2017.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., M. English, and R. Wong, 1985: Hailstone size distributions and their relationship to storm thermodynamics. J. Climate Appl. Meteor., 24, 10591067, https://doi.org/10.1175/1520-0450(1985)024<1059:HSDATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and A. K. Heidinger, 2013: Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties. J. Appl. Meteor. Climatol., 52, 20092023, https://doi.org/10.1175/JAMC-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, https://doi.org/10.1175/WAF-D-13-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B., 1958: Hail determination by radar analysis. Mon. Wea. Rev., 86, 435438, https://doi.org/10.1175/1520-0493(1958)086<0435:HDBRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691688, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, https://doi.org/10.1029/2007JD009598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depue, T. K., P. C. Kennedy, and S. A. Rutledge, 2007: Performance of the hail differential reflectivity (HDR) polarimetric radar hail indicator. J. Appl. Meteor. Climatol., 46, 12901301, https://doi.org/10.1175/JAM2529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donavon, R. A., and K. A. Jungbluth, 2007: Evaluation of a technique for radar identification of large hail across the upper Midwest and central plains of the United States. Wea. Forecasting, 22, 244254, https://doi.org/10.1175/WAF1008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A. I., H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, 562 pp.

  • Dworak, R., K. Bedka, J. Brunner, and W. Feltz, 2012: Comparison between GOES-12 overshooting-top detections, WSR-88D radar reflectivity, and severe storm reports. Wea. Forecasting, 27, 684699, https://doi.org/10.1175/WAF-D-11-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., and R. L. Thompson, 1998: Nationwide comparisons of hail size with WSR-88D vertically integrated liquid water and derived thermodynamic sounding data. Wea. Forecasting, 13, 277285, https://doi.org/10.1175/1520-0434(1998)013<0277:NCOHSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., 2011: The NSSL hydrometeor classification algorithm in winter surface precipitation: Evaluation and future development. Wea. Forecasting, 26, 756765, https://doi.org/10.1175/WAF-D-10-05011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farnell, C., T. Rigo, and N. Pineda, 2018: Exploring radar and lightning variables associated with the lightning jump. Can we predict the size of the hail? Atmos. Res., 202, 175186, https://doi.org/10.1016/j.atmosres.2017.11.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R., J. Beauchamp, D. Cecil, and G. Heymsfield, 2015: A prototype hail detection algorithm and hail climatology developed with the Advanced Microwave Sounding Unit (AMSU). Atmos. Res., 163, 2435, https://doi.org/10.1016/j.atmosres.2014.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraile, R., A. Castro, and J. Sánchez, 1992: Analysis of hailstone size distributions from a hailpad network. Atmos. Res., 28, 311326, https://doi.org/10.1016/0169-8095(92)90015-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gravelle, C. M., J. R. Mecikalski, W. E. Line, K. M. Bedka, R. A. Petersen, J. M. Sieglaff, G. T. Stano, and S. J. Goodman, 2016: Demonstration of a GOES-R satellite convective toolkit to “bridge the gap” between severe weather watches and warnings: An example from the 20 May 2013 Moore, Oklahoma, tornado outbreak. Bull. Amer. Meteor. Soc., 97, 6984, https://doi.org/10.1175/BAMS-D-14-00054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunturi, P., and M. K. Tippett, 2017: Managing severe thunderstorm risk: Impact of ENSO on U.S. tornado and hail frequencies. WillisRe Tech. Rep., 5 pp., http://www.willisre.com/Media_Room/Press_Releases_(Browse_All)/2017/WillisRe_Impact_of_ENSO_on_US_Tornado_and_Hail_frequencies_Final.pdf.

  • Heinselman, P. L., and A. V. Ryzhkov, 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21, 839850, https://doi.org/10.1175/WAF956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J., and S. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651376, https://doi.org/10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holleman, I., H. Wessels, J. Onvlee, and S. Barlag, 2000: Development of a hail-detection-product: S10: Deep convection. Phys. Chem. Earth, 25B, 12931297, https://doi.org/10.1016/S1464-1909(00)00197-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., 2014: Formation of the enhanced-V infrared cloud-top feature from high-resolution three-dimensional radar observations. J. Atmos. Sci., 71, 332348, https://doi.org/10.1175/JAS-D-13-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, https://doi.org/10.1175/JAS-D-13-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and K. P. Bowman, 2017: Algorithm description document for version 3.1 of the three-dimensional gridded NEXRAD WSR-88D radar (GridRad) dataset. Tech. Rep., 23 pp., http://gridrad.org/pdf/GridRad-v3.1-Algorithm-Description.pdf.

  • Homeyer, C. R., J. D. McAuliffe, and K. M. Bedka, 2017: On the development of above-anvil cirrus plumes in extratropical convection. J. Atmos. Sci., 74, 16171633, https://doi.org/10.1175/JAS-D-16-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J., V. Bringi, L. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, D. L., J. T. Schaefer, and C. A. Doswell, 1985: Climatology of nontornadic severe thunderstorm events in the United States. Mon. Wea. Rev., 113, 19972014, https://doi.org/10.1175/1520-0493(1985)113<1997:CONSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, https://doi.org/10.15191/nwajom.2013.0121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Line, W. E., T. J. Schmit, D. T. Lindsey, and S. J. Goodman, 2016: Use of geostationary super rapid scan satellite imagery by the Storm Prediction Center. Wea. Forecasting, 31, 483494, https://doi.org/10.1175/WAF-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and S. Heckman, 2010: The application of total lightning detection and cell tracking for severe weather prediction. WMO Technical Conf. on Meteorology and Environmental Instruments and Methods of Observation, World Meteorological Organization, https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-104_TECO-2010/P2_7_Heckman_USA.pdf.

  • López, L., and J. Sanchez, 2009: Discriminant methods for radar detection of hail. Atmos. Res., 93, 358368, https://doi.org/10.1016/j.atmosres.2008.09.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukach, M., L. Foresti, O. Giot, and L. Delobbe, 2017: Estimating the occurrence and severity of hail based on 10 years of observations from weather radar in Belgium. Meteor. Appl., 24, 250259, https://doi.org/10.1002/met.1623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahale, V. N., G. Zhang, and M. Xue, 2014: Fuzzy logic classification of s-band polarimetric radar echoes to identify three-body scattering and improve data quality. J. Appl. Meteor., 53, 20172033, https://doi.org/10.1175/JAMC-D-13-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., and A. Witt, 2001: A Bayesian neural network for severe-hail size prediction. Wea. Forecasting, 16, 600610, https://doi.org/10.1175/1520-0434(2001)016<0600:ABNNFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, G. K., D. Treddenick, and R. Parsons, 1976: An observed relationship between the height of the 45 dBZ contours in storm profiles and surface hail reports. J. Appl. Meteor., 15, 13361340, https://doi.org/10.1175/1520-0450(1976)015<1336:AORBTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887894, https://doi.org/10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and J. F. W. Purdom, 1994: Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc., 75, 757782, https://doi.org/10.1175/1520-0477(1994)075<0757:IGITFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mroz, K., A. Battaglia, T. J. Lang, D. J. Cecil, S. Tanelli, and F. Tridon, 2017: Hail-detection algorithm for the GPM Core Observatory satellite sensors. J. Appl. Meteor. Climatol., 56, 19391957, https://doi.org/10.1175/JAMC-D-16-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mroz, K., A. Battaglia, T. J. Lang, S. Tanelli, and G. F. Sacco, 2018: Global precipitation measuring dual-frequency precipitation radar observations of hailstorm vertical structure: Current capabilities and drawbacks. J. Appl. Meteor. Climatol., 57, 21612178, https://doi.org/10.1175/JAMC-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ni, X., C. Liu, D. J. Cecil, and Q. Zhang, 2017: On the detection of hail using satellite passive microwave radiometers and precipitation radar. J. Appl. Meteor. Climatol., 56, 26932709, https://doi.org/10.1175/JAMC-D-17-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nisi, L., O. Martius, A. Hering, M. Kunz, and U. Germann, 2016: Spatial and temporal distribution of hailstorms in the Alpine region: A long-term, high resolution, radar-based analysis. Quart. J. Roy. Meteor. Soc., 142, 15901604, https://doi.org/10.1002/qj.2771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NCEI, 2013: Satellite data. NOAA/NCEI, accessed August 2016–July 2018, https://www.ncdc.noaa.gov/data-access/satellite-data.

  • NOAA/NCEI, 2014: Storm events database, version 3. NOAA/NCEI, accessed August 2016–July 2018, https://www.ncdc.noaa.gov/stormevents/.

  • NOAA/NCEP/ESRL, 2012: Rapid Refresh (RAP). NOAA/NCEP/ESRL, accessed August 2016–July 2018, https://rapidrefresh.noaa.gov/.

  • NOAA/NESDIS/NCEI, 1991: NOAA Next Generation Radar (NEXRAD) Level 2 Base Data. NOAA/NESDIS/NCEI, accessed August 2016–July 2018, https://doi.org/10.7289/V5W9574V.

    • Crossref
    • Export Citation
  • NOAA/NWS/SPC, 1955: Severe Weather Database. NOAA/NWS/SPC, accessed August 2016–July 2018, https://www.spc.noaa.gov/wcm/#data.

  • Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hailfall diagnosis. Electron. J. Severe Storms Meteor., 13, http://www.ejssm.org/ojs/index.php/ejssm/article/view/163/113.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, G. J. Stumpf, J. Hocker, and L. Lopez, 2005: A comparison of multi-sensor hail diagnosis techniques. 21st Conf. on Interactive Information Processing Systems, San Diego, CA, Amer. Meteor. Soc., P1.11, http://ams.confex.com/ams/pdfpapers/87640.pdf.

  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J. Gourley, 2009: The severe hazards analysis and verification experiment. Bull. Amer. Meteor. Soc., 90, 15191530, https://doi.org/10.1175/2009BAMS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petrocchi, P. J., 1982: Automatic detection of hail by radar. Air Force Geophysics Laboratory Tech. Rep. AFGLTR-82-0277 (Environ. Res. Paper 796), 33 pp., https://apps.dtic.mil/dtic/tr/fulltext/u2/a130078.pdf.

  • Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, https://doi.org/10.1175/MWR-D-11-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Punge, H. J., K. M. Bedka, M. Kunz, and A. Werner, 2014: A new physically based stochastic event catalog for hail in Europe. Nat. Hazards, 73, 16251645, https://doi.org/10.1007/s11069-014-1161-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. Melnikov, and T. Schuur, 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, https://doi.org/10.1175/JTECH1772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005b: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. J. Atmos. Oceanic Technol., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saltikoff, E., J.-P. Tuovinen, J. Kotro, T. Kuitunen, and H. Hohti, 2010: A climatological comparison of radar and ground observations of hail in Finland. J. Appl. Meteor. Climatol., 49, 101114, https://doi.org/10.1175/2009JAMC2116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • San Ambrosio, I., F. Martín, and F. Elizaga, 2007: Development and behaviour of a radar-based operational tool for hailstorms identification. Atmos. Res., 83, 306314, https://doi.org/10.1016/j.atmosres.2005.08.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandmæl, T. N., 2017: An evaluation of radar- and satellite-data based products to discriminate between tornadic and non-tornadic storms. M.S. thesis, School of Meteorology, University of Oklahoma, 98 pp., https://hdl.handle.net/11244/52775.

  • Schaefer, J., J. J. Levit, S. J. Weiss, and D. W. McCarthy, 2004: The frequency of large hail over the contiguous United States. 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., 3.3, https://ams.confex.com/ams/pdfpapers/69834.pdf.

  • Schmit, T. J., and Coauthors, 2013: GOES-14 super rapid scan operations to prepare for GOES-R. J. Appl. Remote Sens., 7, https://doi.org/10.1117/1.JRS.7.073462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the Next-Generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, https://doi.org/10.1175/BAMS-86-8-1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563, https://doi.org/10.1175/2009JAMC2237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., L. D. Carey, E. V. Schultz, and R. J. Blakeslee, 2017: Kinematic and microphysical significance of lightning jump versus nonjump increases in total flash rate. Wea. Forecasting, 32, 275288, https://doi.org/10.1175/WAF-D-15-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvák, M., and Coauthors, 2010: Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos. Res., 97, 8096, https://doi.org/10.1016/j.atmosres.2010.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skripniková, K., and D. Řezáčová, 2014: Radar-based hail detection. Atmos. Res., 144, 175185, https://doi.org/10.1016/j.atmosres.2013.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starzec, M., C. R. Homeyer, and G. L. Mullendore, 2017: Storm labeling in three dimensions (SL3D): A volumetric radar echo and dual-polarization updraft classification algorithm. Mon. Wea. Rev., 145, 11271145, https://doi.org/10.1175/MWR-D-16-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • University of Wisconsin–Madison Space Science and Engineering Center, 2011: Space weather data. Accessed August 2016–July 2018, https://www.ssec.wisc.edu/data/geo-list.

  • Vivekanandan, J., D. S. Zrnić, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., B. Federer, and P. Grimm, 1979: Criteria for the detection of hail cells. J. Appl. Meteor., 18, 15211525, https://doi.org/10.1175/1520-0450(1979)018<1521:CFTDOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., J. Shi, J. Hou, and Y. Hu, 2018: The identification of hail storms in the early stage using time series analysis. J. Geophys. Res. Atmos., 123, 929947, https://doi.org/10.1002/2017JD027449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245265, https://doi.org/10.1016/S0169-8095(99)00011-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998a: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, E. D. W. Mitchell, J. T. Johnson, and K. W. Thomas, 1998b: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, https://doi.org/10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., D. Burgess, A. Seimon, J. T. Allen, J. Snyder, and H. Bluestein, 2018: Rapid-scan radar observations of an Oklahoma tornadic hailstorm producing giant hail. Wea. Forecasting, 33, 12631282, https://doi.org/10.1175/WAF-D-18-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Wea. Forecasting, 80, 389406, https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5340 2240 183
PDF Downloads 3821 795 47