On the Assessment of a Cooling Tower Scheme for High-Resolution Numerical Weather Modeling for Urban Areas

Miao Yu Institute of Urban Meteorology, China Meteorological Administration, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Miao Yu in
Current site
Google Scholar
PubMed
Close
,
Jorge González Department of Mechanical Engineering, and NOAA Cooperative Science Center for Earth System Sciences and Remote Sensing Technologies, City College of New York, New York, New York

Search for other papers by Jorge González in
Current site
Google Scholar
PubMed
Close
,
Shiguang Miao Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

Search for other papers by Shiguang Miao in
Current site
Google Scholar
PubMed
Close
, and
Prathap Ramamurthy Department of Mechanical Engineering, and NOAA Cooperative Science Center for Earth System Sciences and Remote Sensing Technologies, City College of New York, New York, New York

Search for other papers by Prathap Ramamurthy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A cooling tower scheme that quantifies the sensible and latent anthropogenic heat fluxes released from buildings was coupled to an operational forecasting system [Rapid Refresh Multiscale Analysis and Prediction of the Beijing Urban Meteorological Institute (RMAPS-Urban)] and was evaluated in the context of the megacity of Beijing, China, during summer months. The objective of this scheme is to correct for underestimations of surface latent heat fluxes in regional climate modeling and weather forecasts in urban areas. The performance for surface heat fluxes by the modified RMAPS-Urban is greatly improved when compared with a suite of observations in Beijing. The cooling tower scheme increases the anthropogenic latent heat partition by 90% of the total anthropogenic heat flux release. Averaged surface latent heat flux in urban areas increases to about 64.3 W m−2 with a peak of 150 W m−2 on dry summer days and 40.35 W m−2 with a peak of 150 W m−2 on wet summer days. The model performance of near-surface temperature and humidity is also improved. Average 2-m temperature errors are reduced by 1°C, and maximum and minimum temperature errors are improved by 2°–3°C; absolute humidity is increased by 5%.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Miao Yu, yumiao0926@126.com

Abstract

A cooling tower scheme that quantifies the sensible and latent anthropogenic heat fluxes released from buildings was coupled to an operational forecasting system [Rapid Refresh Multiscale Analysis and Prediction of the Beijing Urban Meteorological Institute (RMAPS-Urban)] and was evaluated in the context of the megacity of Beijing, China, during summer months. The objective of this scheme is to correct for underestimations of surface latent heat fluxes in regional climate modeling and weather forecasts in urban areas. The performance for surface heat fluxes by the modified RMAPS-Urban is greatly improved when compared with a suite of observations in Beijing. The cooling tower scheme increases the anthropogenic latent heat partition by 90% of the total anthropogenic heat flux release. Averaged surface latent heat flux in urban areas increases to about 64.3 W m−2 with a peak of 150 W m−2 on dry summer days and 40.35 W m−2 with a peak of 150 W m−2 on wet summer days. The model performance of near-surface temperature and humidity is also improved. Average 2-m temperature errors are reduced by 1°C, and maximum and minimum temperature errors are improved by 2°–3°C; absolute humidity is increased by 5%.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Miao Yu, yumiao0926@126.com
Save
  • Adnot, J., and Coauthors, 2003: Energy efficiency and certification of central air conditioners (EECCAC): Final report—April 2003. ARMINES Study for the D.G. Transportation-Energy (DGTREN) of the Commission of the E.U., 200 pp.

  • Akbari, H., and S. Konopacki, 2004: Energy savings of heat-island reduction strategies in Toronto, Canada. Energy, 29, 191210, https://doi.org/10.1016/j.energy.2003.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akbari, H., M. Pomerantz, and H. Taha, 2001: Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy, 70, 295310, https://doi.org/10.1016/S0038-092X(00)00089-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, L., F. Lindberg, and C. S. B. Grimmond, 2011: Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol., 31, 19902005, https://doi.org/10.1002/joc.2210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlage, M., S. Miao, and F. Chen, 2016: Impact of physics parameterizations on high-resolution weather prediction over two Chinese megacities. J. Geophys. Res. Atmos., 121, 44874498, https://doi.org/10.1002/2015JD024450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Block, A., K. Keuler, and E. Schaller, 2004: Impacts of anthropogenic heat on regional climate patterns. Geophys. Res. Lett., 31, L12211, https://doi.org/10.1029/2004GL019852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta–scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 2004: New directions: The growing urban heat and pollution “island” effect—Impact on chemistry and climate. Atmos. Environ., 38, 35393540, https://doi.org/10.1016/j.atmosenv.2004.03.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Munck, C., and Coauthors, 2013: How much can air conditioning increase air temperatures for a city like Paris, France? Int. J. Climatol., 33, 210227, https://doi.org/10.1002/joc.3415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, S., 2015: Assessment report of regional high resolution model (BJ-RUCv3.0). IUM Tech. Note IUM/2015-1, 21 pp.

  • Feng, J., Y. Wang, Z. Ma, and Y. Liu, 2012: Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China. J. Climate, 25, 71877203, https://doi.org/10.1175/JCLI-D-11-00333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., 2009: Integrating anthropogenic heat flux with global climate models. Geophys. Res. Lett., 36, L02801, https://doi.org/10.1029/2008GL036465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González, J. E., and A. J. Bula-Silvera, 2017: Conventional mechanical systems for efficient heating, ventilating, and air conditioning systems. Energy Systems, Vol. I, Handbook of Integrated and Sustainable Buildings Equipment and Systems, ASME Press, https://doi.org/10.1115/1.861271_ch3.

    • Crossref
    • Export Citation
  • Gutiérrez, E., J. Gonzalez, A. Martilli, R. Bornstein, and M. Arend, 2015: Simulations of a heat wave event in New York City using a multilayer urban parameterization. J. Appl. Meteor. Climatol., 54, 283301, https://doi.org/10.1175/JAMC-D-14-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassid, S., M. Santamouris, N. Papanikolaou, A. Linardi, N. Klitsikas, C. Georgakis, and D. N. Assimakopoulos, 2000: The effect of the Athens heat island on air conditioning load. Energy Build., 32, 131141, https://doi.org/10.1016/S0378-7788(99)00045-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haub, C., 2010: World population data sheet. Population Reference Bureau, 19 pp., https://www.prb.org/wp-content/uploads/2010/11/10wpds_eng.pdf.

  • He, X., W. Jiang, Y. Chen, and G. Liu, 2007: Numerical simulation of the impacts of anthropogenic heat on the structure of the urban boundary layer. Chin. J. Geophys., 50, 7583, https://doi.org/10.1002/cjg2.1012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinkel, K. M., and F. E. Nelson, 2007: Anthropogenic heat island at Barrow, Alaska, during winter: 2001–2005. J. Geophys. Res., 112, D06118, https://doi.org/10.1029/2006JD007837.

    • Search Google Scholar
    • Export Citation
  • Hsieh, C.-M., T. Aramaki, and K. Hanaki, 2007: The feedback of heat rejection to air conditioning load during the nighttime in subtropical climate. Energy Build., 39, 11751182, https://doi.org/10.1016/j.enbuild.2006.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., W. Dong, and Y. He, 2010: Impact of land surface forcings on mean and extreme temperature in eastern China. J. Geophys. Res., 115, D19117, https://doi.org/10.1029/2009JD013368.

    • Search Google Scholar
    • Export Citation
  • Ichinose, T., K. Shimodozono, and K. Hanaki, 1999: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ., 33, 38973909, https://doi.org/10.1016/S1352-2310(99)00132-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531, https://doi.org/10.1038/nature01675.

  • Kalnay, E., M. Cai, H. Li, and J. Tobin, 2006: Estimation of the impact of land-surface forcings on temperature trends in eastern United States. J. Geophys. Res., 111, D06106, https://doi.org/10.1029/2005JD006555.

    • Search Google Scholar
    • Export Citation
  • Kolokotroni, M., I. Giannitsaris, and R. Watkins, 2006: The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Sol. Energy, 80, 383392, https://doi.org/10.1016/j.solener.2005.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, https://doi.org/10.2151/jmsj.82.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., H. Zhang, X. Liu, and J. Huang, 2004: Urban heat island effect on annual mean temperature during the last 50 years in China. Theor. Appl. Climatol., 79, 165174, https://doi.org/10.1007/s00704-004-0065-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., L. Zhu, X. Zhao, S. Li, and Y. Yan, 2013: Urbanization impact on temperature change in China with emphasis on land cover change and human activity. J. Climate, 26, 87658780, https://doi.org/10.1175/JCLI-D-12-00698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and Coauthors, 2018: SURF: Understanding and predicting urban convection and haze. Bull. Amer. Meteor. Soc., 99, 13911413, https://doi.org/10.1175/BAMS-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, J., L. Tang, G. Shao, Q. Qiu, C. Wang, S. Zheng, and X. Su, 2014: A neighbor decay cellular automata approach for simulating urban expansion based on particle swarm intelligence. Int. J. Geogr. Inf. Sci., 28, 720738, https://doi.org/10.1080/13658816.2013.869820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104, 261304, https://doi.org/10.1023/A:1016099921195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S. G., F. Chen, M. A. LeMone, M. Tewari, Q. Li, and Y. Wang, 2009: An observation al and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484501, https://doi.org/10.1175/2008JAMC1909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narumi, D., A. Kondo, and Y. Shimoda, 2009: Effects of anthropogenic heat release upon the urban climate in a Japanese megacity. Environ. Res., 109, 421431, https://doi.org/10.1016/j.envres.2009.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., Y. Genchi, H. Kondo, Y. Kikegawa, H. Yoshikado, and Y. Hirano, 2007: Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. J. Appl. Meteor. Climatol., 46, 6681, https://doi.org/10.1175/JAM2441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olivo, Y., A. Hamidi, and P. Ramamurthy, 2017: Spatiotemporal variability in building energy use in New York City. Energy, 141, 13931401, https://doi.org/10.1016/j.energy.2017.11.066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and non-local closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, https://doi.org/10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., 2007: Review of urban climate research in (sub) tropical regions. Int. J. Climatol., 27, 18591873, https://doi.org/10.1002/joc.1591.

  • Sailor, D. J., 2011: A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol., 31, 189199, https://doi.org/10.1002/joc.2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., A. Brooks, M. Hart, and S. Heiple, 2007: A bottom-up approach for estimating latent and sensible heat emissions from anthropogenic sources. Seventh Symp. on the Urban Environment, San Diego, CA, Amer. Meteor. Soc., 3.6, https://ams.confex.com/ams/pdfpapers/127290.pdf.

  • Salamanca, F., and A. Martilli, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol., 99, 345356, https://doi.org/10.1007/s00704-009-0143-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A Study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteor. Climatol., 50, 11071128, https://doi.org/10.1175/2010JAMC2538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., M. Georgescu, A. Mahalov, M. Moustaoui, and M. Wang, 2014: Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos., 119, 59495965, https://doi.org/10.1002/2013JD021225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stull, R., 2011: Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteor. Climatol., 50, 22672269, https://doi.org/10.1175/JAMC-D-11-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, Y., and Z. Lian, 2009: Influence of air conditioners utilization on urban thermal environment. Appl. Therm. Eng., 29, 670675, https://doi.org/10.1016/j.applthermaleng.2008.03.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Zhang, and Y. Qian, 2012: Simulation of urban climate with high-resolution WRF model: A case study in Nanjing, China. Asia-Pac. J. Atmos. Sci., 48, 227241, https://doi.org/10.1007/s13143-012-0023-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., M. Cai, and A. Hu, 2013: Energy consumption and the unexplained winter warming over northern Asia and North America. Nat. Climate Change, 3, 466470, https://doi.org/10.1038/nclimate1803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Miao, Y. Dai, and Y. H. Liu, 2013: Numerical simulation of characteristics of summer clear day boundary layer in Beijing and the impact of urban underlying surface on sea breeze (in Chinese). Chin. J. Geophys., 56, 25582573.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Miao, Y. Dai, and R. Bornstein, 2017: Numerical simulation of urban land surface effects on summer convective rainfall under different UHI intensity in Beijing. J. Geophys. Res. Atmos., 122, 78517868, https://doi.org/10.1002/2017JD026614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, S., and S. Liu, 2008: Urbanization effect on climate in Beijing. Climate Environ. Res., 13, 123133.

  • Zheng, Y., S. Miao, Q. Zhang, and Y. Bao, 2015: Improvements of building energy model and anthropogenic heat release from cooling system. Plateau Meteor., 34,786796, https://doi.org/10.7522/j.issn.1000-0534.2014.00035.

    • Search Google Scholar
    • Export Citation
  • Zhou, L. M., R. E. Dickinson, Y. Tian, J. Fang, Q. Li, R. K. Kaufmann, C. J. Tucker, and R. B. Myneni, 2004: Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA, 101, 95409544, https://doi.org/10.1073/pnas.0400357101.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 349 109 6
PDF Downloads 372 110 3