A Global Analysis of Land Surface Temperature Diurnal Cycle Using MODIS Observations

Zahra Sharifnezhadazizi City College of New York, City University of New York, New York, New York

Search for other papers by Zahra Sharifnezhadazizi in
Current site
Google Scholar
PubMed
Close
,
Hamid Norouzi New York City College of Technology, City University of New York, Brooklyn, and Earth and Environmental Sciences, Graduate Center, City University of New York, New York, New York

Search for other papers by Hamid Norouzi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0405-5108
,
Satya Prakash Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India

Search for other papers by Satya Prakash in
Current site
Google Scholar
PubMed
Close
,
Christopher Beale New York City College of Technology, City University of New York, Brooklyn, New York

Search for other papers by Christopher Beale in
Current site
Google Scholar
PubMed
Close
, and
Reza Khanbilvardi City College of New York, City University of New York, New York, New York

Search for other papers by Reza Khanbilvardi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Diurnal variations of land surface temperature (LST) play a vital role in a wide range of applications such as climate change assessment, land–atmosphere interactions, and heat-related health issues in urban regions. This study uses 15 years (2003–17) of daily observations of LST Collection 6 from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the Aqua and the Terra satellites. A spline interpolation method is used to estimate half-hourly global LST from the MODIS measurements. A preliminary assessment of interpolated LST with hourly ground-based observations over selected stations of North America shows bias and an error of less than 1 K. Results suggest that the present interpolation method is capable of capturing the diurnal variations of LST reasonably well for different land-cover types. The diurnal cycle of LST and time of occurrence of maximum temperature are computed from the spatially and temporally consistent interpolated diurnal LST data at a global scale. Regions with higher variability in the timing of maximum LST hours and diurnal amplitude are identified in this study. The global desert regions show generally small variability of the monthly mean diurnal LST range, whereas larger areas of the global land exhibit rather higher variability in the diurnal LST range during the study period. Moreover, the changes in diurnal temperature range for the study period are examined for distinct land-cover types. Analysis of the 15-yr time series of the diurnal LST record shows an overall decrease of 0.5 K in amplitude over the Northern Hemisphere. However, the diurnal LST range shows variant changes in the Southern Hemisphere.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hamid Norouzi, hnorouzi@citytech.cuny.edu

Abstract

Diurnal variations of land surface temperature (LST) play a vital role in a wide range of applications such as climate change assessment, land–atmosphere interactions, and heat-related health issues in urban regions. This study uses 15 years (2003–17) of daily observations of LST Collection 6 from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the Aqua and the Terra satellites. A spline interpolation method is used to estimate half-hourly global LST from the MODIS measurements. A preliminary assessment of interpolated LST with hourly ground-based observations over selected stations of North America shows bias and an error of less than 1 K. Results suggest that the present interpolation method is capable of capturing the diurnal variations of LST reasonably well for different land-cover types. The diurnal cycle of LST and time of occurrence of maximum temperature are computed from the spatially and temporally consistent interpolated diurnal LST data at a global scale. Regions with higher variability in the timing of maximum LST hours and diurnal amplitude are identified in this study. The global desert regions show generally small variability of the monthly mean diurnal LST range, whereas larger areas of the global land exhibit rather higher variability in the diurnal LST range during the study period. Moreover, the changes in diurnal temperature range for the study period are examined for distinct land-cover types. Analysis of the 15-yr time series of the diurnal LST record shows an overall decrease of 0.5 K in amplitude over the Northern Hemisphere. However, the diurnal LST range shows variant changes in the Southern Hemisphere.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hamid Norouzi, hnorouzi@citytech.cuny.edu
Save
  • Aires, F., C. Prigent, and W. Rossow, 2004: Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions. J. Geophys. Res., 109, D04313, https://doi.org/10.1029/2003JD003527.

    • Search Google Scholar
    • Export Citation
  • Bell, J. E., and Coauthors, 2013: U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeor., 14, 977988, https://doi.org/10.1175/JHM-D-12-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braganza, K., D. J. Karoly, and J. M. Arblaster, 2004: Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett., 31, L13217, https://doi.org/10.1029/2004GL019998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didari, S., H. Norouzi, S. Zand-Parsa, and R. Khanbilvardi, 2017: Estimation of daily minimum land surface air temperature using MODIS data in southern Iran. Theor. Appl. Climatol., 130, 11491161, https://doi.org/10.1007/s00704-016-1945-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, S.-B., Z.-L. Li, B.-H. Tang, H. Wu, R. Tang, Y. Bi, and G. Zhou, 2014a: Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data. Remote Sens., 6, 32473262, https://doi.org/10.3390/rs6043247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, S.-B., Z.-L. Li, B.-H. Tang, H. Wu, and R. Tang, 2014b: Generation of a time-consistent land surface temperature product from MODIS data. Remote Sens. Environ., 140, 339349, https://doi.org/10.1016/j.rse.2013.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, S.-B., Z.-L. Li, and P. Leng, 2017: A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data. Remote Sens. Environ., 195, 107117, https://doi.org/10.1016/j.rse.2017.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, S.-B., Z.-L. Li, H. Wu, P. Leng, M. Gao, and C. Wang, 2018: Radiance-based validation of land surface temperature products derived from Collection 6 MODIS thermal infrared data. Int. J. Appl. Earth Obs. Geoinf., 70, 8492, https://doi.org/10.1016/j.jag.2018.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duveiller, G., J. Hooker, and A. Cescatti, 2018: The mark of vegetation change on Earth’s surface energy balance. Nat. Commun., 9, 679, https://doi.org/10.1038/s41467-017-02810-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., and G. Gutman, 1999: Monthly mean diurnal cycles in surface temperatures over land for global climate studies. J. Climate, 12, 19001910, https://doi.org/10.1175/1520-0442(1999)012<1900:MMDCIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L. S., and P. M. Forster, 2010: An empirical study of geographic and seasonal variations in diurnal temperature range. J. Climate, 23, 32053221, https://doi.org/10.1175/2010JCLI3215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Justice, C. O., and Coauthors, 1998: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens., 36, 12281249, https://doi.org/10.1109/36.701075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilibarda, M., T. Hengl, G. B. M. Heuvelink, B. Graler, E. Pebesma, M. P. Tadic, and B. Bajat, 2014: Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res. Atmos., 119, 22942313, https://doi.org/10.1002/2013JD020803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.-L., S.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, 2013: Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ., 131, 1437, https://doi.org/10.1016/j.rse.2012.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y.-K., M. Cai, E. Kalnay, and L. Zhou, 2008: Impact of vegetation types on surface temperature change. J. Appl. Meteor. Climatol., 47, 411424, https://doi.org/10.1175/2007JAMC1494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, E., 1983: Global vegetation and land use: New high-resolution data bases for climate studies. J. Climate Appl. Meteor., 22, 474487, https://doi.org/10.1175/1520-0450(1983)022<0474:GVALUN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mildrexler, D. J., M. Zhao, W. B. Cohen, S. W. Running, X. P. Song, and M. O. Jones, 2018: Thermal anomalies detect critical global land surface changes. J. Appl. Meteor. Climatol., 57, 391411, https://doi.org/10.1175/JAMC-D-17-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muster, S., M. Langer, A. Abnizova, K. L. Young, and J. Boike, 2015: Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes. Remote Sens. Environ., 168, 112, https://doi.org/10.1016/j.rse.2015.06.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norouzi, H., W. Rossow, M. Temimi, C. Prigent, M. Azarderakhsh, S. Boukabara, and R. Khanbilvardi, 2012: Using microwave brightness temperature diurnal cycle to improve emissivity retrievals over land. Remote Sens. Environ., 123, 470482, https://doi.org/10.1016/j.rse.2012.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norouzi, H., M. Temimi, A. AghaKouchak, M. Azarderakhsh, R. Khanbilvardi, G. Shields, and K. Tesfagiorgis, 2015: Inferring land surface parameters from the diurnal variability of microwave and infrared temperatures. Phys. Chem. Earth, 83–84, 2835, https://doi.org/10.1016/j.pce.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., H. Norouzi, M. Azarderakhsh, R. Blake, and K. Tesfagiorgis, 2016: Global land surface emissivity estimation from AMSR2 observations. IEEE Geosci. Remote Sens. Lett., 13, 12701274, https://doi.org/10.1109/LGRS.2016.2581140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., H. Norouzi, M. Azarderakhsh, R. Blake, and R. Khanbilvardi, 2017: Potential of satellite-based land emissivity estimates for the detection of high-latitude freeze and thaw states. Geophys. Res. Lett., 44, 23362342, https://doi.org/10.1002/2017GL072560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., H. Norouzi, M. Azarderakhsh, R. Blake, C. Prigent, and R. Khanbilvardi, 2018: Estimation of consistent global microwave land surface emissivity from AMSR-E and AMSR2 observations. J. Appl. Meteor. Climatol., 57, 907919, https://doi.org/10.1175/JAMC-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., F. Shati, H. Norouzi, and R. Blake, 2019: Observed differences between near-surface air and skin temperatures using satellite and ground-based data. Theor. Appl. Climatol., https://doi.org/10.1007/s00704-018-2623-1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., W. B. Rossow, and E. Matthews, 1998: Global maps of microwave land emissivities: Potential for land surface characterization. Radio Sci., 33, 745751, https://doi.org/10.1029/97RS02460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding cloud from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruzmaikin, A., H. H. Aumann, J. Lee, and J. Susskind, 2017: Diurnal cycle variability of surface temperature inferred from AIRS data. J. Geophys. Res. Atmos., 122, 10 92810 938, https://doi.org/10.1002/2016JD026265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheitlin, K. N., and P. G. Dixon, 2010: Diurnal temperature range variability due to land cover and airmass types in the Southeast. J. Appl. Meteor. Climatol., 49, 879888, https://doi.org/10.1175/2009JAMC2322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shati, F., S. Prakash, H. Norouzi, and R. Blake, 2018: Assessment of differences between near-surface air and soil temperatures for reliable detection of high-latitude freeze and thaw states. Cold Reg. Sci. Technol., 145, 8692, https://doi.org/10.1016/j.coldregions.2017.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Z., and Coauthors, 2018: Global land surface temperature influenced by vegetation cover and PM2.5 from 2001 to 2016. Remote Sens., 10, 2034, https://doi.org/10.3390/rs10122034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., and Coauthors, 2016: Reassessing changes in diurnal temperature range: Intercomparison and evaluation of existing global data set estimates. J. Geophys. Res. Atmos., 121, 51385158, https://doi.org/10.1002/2015JD024584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomlinson, C. J., L. Chapman, J. E. Thornes, and C. Baker, 2011: Remote sensing land surface temperature for meteorology and climatology: A review. Meteor. Appl., 18, 296306, https://doi.org/10.1002/met.287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2014: New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ., 140, 3645, https://doi.org/10.1016/j.rse.2013.08.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Q., and P. Fu, 2014: Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery. ISPRS J. Photogramm. Remote Sens., 97, 7888, https://doi.org/10.1016/j.isprsjprs.2014.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, W., Z. Nan, Z. Wang, H. Chen, T. Wu, and L. Zhao, 2015: An effective interpolation method for MODIS land surface temperature on the Qinghai–Tibet Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 45394550, https://doi.org/10.1109/JSTARS.2015.2464094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, W., and Coauthors, 2013: Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sens. Environ., 131, 119139, https://doi.org/10.1016/j.rse.2012.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, J., Y. Chen, X. Zhang, and W. Zhan, 2013: Modelling the diurnal variations of urban heat islands with multi-source satellite data. Int. J. Remote Sens., 34, 75687588, https://doi.org/10.1080/01431161.2013.821576.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1947 634 36
PDF Downloads 1684 443 26