Estimation of Snowfall Properties at a Mountainous Site in Norway Using Combined Radar and In Situ Microphysical Observations

Claire E. Schirle University of Utah, Salt Lake City, Utah

Search for other papers by Claire E. Schirle in
Current site
Google Scholar
PubMed
Close
,
Steven J. Cooper University of Utah, Salt Lake City, Utah

Search for other papers by Steven J. Cooper in
Current site
Google Scholar
PubMed
Close
,
Mareile Astrid Wolff Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by Mareile Astrid Wolff in
Current site
Google Scholar
PubMed
Close
,
Claire Pettersen University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Claire Pettersen in
Current site
Google Scholar
PubMed
Close
,
Norman B. Wood University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Norman B. Wood in
Current site
Google Scholar
PubMed
Close
,
Tristan S. L’Ecuyer University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Tristan S. L’Ecuyer in
Current site
Google Scholar
PubMed
Close
,
Trond Ilmo Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by Trond Ilmo in
Current site
Google Scholar
PubMed
Close
, and
Knut Nygård Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by Knut Nygård in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ability of in situ snowflake microphysical observations to constrain estimates of surface snowfall accumulations derived from coincident, ground-based radar observations is explored. As part of the High-Latitude Measurement of Snowfall (HiLaMS) field campaign, a Micro Rain Radar (MRR), Precipitation Imaging Package (PIP), and Multi-Angle Snow Camera (MASC) were deployed to the Haukeliseter Test Site run by the Norwegian Meteorological Institute during winter 2016/17. This measurement site lies near an elevation of 1000 m in the mountains of southern Norway and houses a double-fence automated reference (DFAR) snow gauge and a comprehensive set of meteorological observations. MASC and PIP observations provided estimates of particle size distribution (PSD), fall speed, and habit. These properties were used as input for a snowfall retrieval algorithm using coincident MRR reflectivity measurements. Retrieved surface snowfall accumulations were evaluated against DFAR observations to quantify retrieval performance as a function of meteorological conditions for the Haukeliseter site. These analyses found differences of less than 10% between DFAR- and MRR-retrieved estimates over the field season when using either PIP or MASC observations for low wind “upslope” events. Larger biases of at least 50% were found for high wind “pulsed” events likely because of sampling limitations in the in situ observations used to constrain the retrieval. However, assumptions of MRR Doppler velocity for mean particle fall speed and a temperature-based PSD parameterization reduced this difference to +16% for the pulsed events. Although promising, these results ultimately depend upon selection of a snowflake particle model that is well matched to scene environmental conditions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steven J. Cooper, steve.cooper@utah.edu

Abstract

The ability of in situ snowflake microphysical observations to constrain estimates of surface snowfall accumulations derived from coincident, ground-based radar observations is explored. As part of the High-Latitude Measurement of Snowfall (HiLaMS) field campaign, a Micro Rain Radar (MRR), Precipitation Imaging Package (PIP), and Multi-Angle Snow Camera (MASC) were deployed to the Haukeliseter Test Site run by the Norwegian Meteorological Institute during winter 2016/17. This measurement site lies near an elevation of 1000 m in the mountains of southern Norway and houses a double-fence automated reference (DFAR) snow gauge and a comprehensive set of meteorological observations. MASC and PIP observations provided estimates of particle size distribution (PSD), fall speed, and habit. These properties were used as input for a snowfall retrieval algorithm using coincident MRR reflectivity measurements. Retrieved surface snowfall accumulations were evaluated against DFAR observations to quantify retrieval performance as a function of meteorological conditions for the Haukeliseter site. These analyses found differences of less than 10% between DFAR- and MRR-retrieved estimates over the field season when using either PIP or MASC observations for low wind “upslope” events. Larger biases of at least 50% were found for high wind “pulsed” events likely because of sampling limitations in the in situ observations used to constrain the retrieval. However, assumptions of MRR Doppler velocity for mean particle fall speed and a temperature-based PSD parameterization reduced this difference to +16% for the pulsed events. Although promising, these results ultimately depend upon selection of a snowflake particle model that is well matched to scene environmental conditions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steven J. Cooper, steve.cooper@utah.edu
Save
  • Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev, 2010: Role of polar amplification in long-term surface air temperature variations and modern arctic warming. J. Climate, 23, 38883906, https://doi.org/10.1175/2010JCLI3297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Black, R. F., 1954: Precipitation at Barrow, Alaska, greater than recorded. Eos, Trans. Amer. Geophys. Union, 35, 203207, https://doi.org/10.1029/TR035i002p00203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R., 2000: Northern Hemisphere snow cover variability and change, 1915–97. J. Climate, 13, 23392355, https://doi.org/10.1175/1520-0442(2000)013<2339:NHSCVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., and J. E. Walsh, 1993: Recent variations of sea ice and air temperature in high latitudes. Bull. Amer. Meteor. Soc., 74, 3347, https://doi.org/10.1175/1520-0477(1993)074<0033:RVOSIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689706, https://doi.org/10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, S. J., N. B. Wood, and T. S. L’Ecuyer, 2017: A variational technique to estimate snowfall rate from coincident radar, snowflake, and fallspeed observations. Atmos. Meas. Tech., 10, 25572571, https://doi.org/10.5194/amt-10-2557-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, J. A., P. M. Forster, and N. Stuber, 2011: Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J. Climate, 24, 35753592, https://doi.org/10.1175/2011JCLI3863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A, 14911499, https://doi.org/10.1364/JOSAA.11.001491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C., 1988: Numerical models of the raingauge exposure problem, field experiments and an improved collector design. Quart. J. Roy. Meteor. Soc., 114, 14851516, https://doi.org/10.1002/qj.49711448407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and Coauthors, 2013: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852857, https://doi.org/10.1126/science.1234532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and S. E. Yuter, 2014: Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation. Geophys. Res. Lett., 41, 65156522, https://doi.org/10.1002/2014GL061016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., C. Fallgatter, K. Shurko, and D. Howlett, 2012: Fallspeed measurement and high-resolution multi-angle photography of hydrometeors in freefall. Atmos. Meas. Tech. Discuss., 5, 48274850, https://doi.org/10.5194/amtd-5-4827-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., P. Y. T. Louie, and D. Yang, 1998: WMO solid precipitation measurement intercomparison. WMO Instruments and Observing Methods Rep. 67, WMO/TD-872, 212 pp.

  • Hammonds, K. D., G. G. Mace, and S. Y. Matrosov, 2014: Characterizing the radar backscatter-cross-section sensitivities of ice-phase hydrometeor size distributions via a simple scaling of the Clausius–Mossotti factor. J. Appl. Meteor. Climatol., 53, 27612774, https://doi.org/10.1175/JAMC-D-13-0280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, https://doi.org/10.1007/s00382-003-0332-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, and L.-B. Tremblay, 2006: Future abrupt reductions in the summer arctic sea ice. Geophys. Res. Lett., 33, L23503, https://doi.org/10.1029/2006GL028024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudak, D., H. Barker, P. Rodriguez, and D. Donovan, 2006: The Canadian CloudSat validation project. Proc. Fourth European Conf. on Radar in Hydrology and Meteorology, Barcelona, Spain, CRAHI, 609–612, http://www.crahi.upc.edu/ERAD2006/proceedingsMask/00165.pdf.

  • Jacob, T., J. Wahr, W. T. Pfeffer, and S. Swenson, 2012: Recent contributions of glaciers and ice caps to sea level rise. Nature, 482, 514518, https://doi.org/10.1038/nature10847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleinkort, C., G.-J. Huang, V. N. Bringi, and B. M. Notaroš, 2017: Visual hull method for realistic 3D particle shape reconstruction based on high-resolution photographs of snowflakes in freefall from multiple views. J. Atmos. Oceanic Technol., 34, 679702, https://doi.org/10.1175/JTECH-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klugmann, D., K. Heinsohn, and H. Kirtzel, 1996: A low cost 24 GHz FM-CW Doppler radar rain profiler. Contrib. Atmos. Phys., 69, 247253.

    • Search Google Scholar
    • Export Citation
  • Kochendorfer, J., and Coauthors, 2018: Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE. Hydrol. Earth Syst. Sci., 22, 14371452, https://doi.org/10.5194/hess-22-1437-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M., and R. Bennartz, 2009: Utilizing spaceborne radars to retrieve dry snowfall. J. Appl. Meteor., 48, 25642580, https://doi.org/10.1175/2009JAMC2193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, L. W., and E. L. Peck, 1974: Accuracy of precipitation measurements for hydrologic modeling. Water Resour. Res., 10, 857863, https://doi.org/10.1029/WR010i004p00857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenaerts, J., E. Meijgaard, M. R. Broeke, S. R. M. Ligtenberg, M. Horwath, and E. Isaksson, 2013: Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett., 40, 26842688, https://doi.org/10.1002/grl.50559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113, D00A09, https://doi.org/10.1029/2007JD009766.

    • Search Google Scholar
    • Export Citation
  • Maahn, M., and P. Kollias, 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 26612673, https://doi.org/10.5194/amt-5-2661-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res., 85, 55295554, https://doi.org/10.1029/JC085iC10p05529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., M. D. Shupe, and I. V. Djalalova, 2008: Snowfall retrievals using millimeter wavelength cloud radars. J. Appl. Meteor. Climatol., 47, 769777, https://doi.org/10.1175/2007JAMC1768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., P. A. Kucera, and L. F. Bliven, 2009: Presenting the snowflake video imager (SVI). J. Atmos. Oceanic Technol., 26, 167179, https://doi.org/10.1175/2008JTECHA1148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., G. V. Gruza, J. Jouzel, T. R. Karl, L. A. Ogallo, and D. E. Parker, 1996: Observed climate variability and change. Climate Change 1995: The Science of Climate Change, J. T. Houghton et al., Eds., Cambridge University Press, 137–192.

  • Palerme, C., J. E. Kay, C. Genthon, T. L’Ecuyer, N. B. Wood, and C. Claud, 2014: How much snow falls on the Antarctic ice sheet? Cryosphere, 8, 15771587, https://doi.org/10.5194/tc-8-1577-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palerme, C., C. Genthon, C. Claud, J. E. Kay, N. B. Wood, and T. L’Ecuyer, 2017: Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dyn., 48, 225239, https://doi.org/10.1007/s00382-016-3071-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., Jr., 1978: Theoretical and observational study of snow-size spectra and snowflake aggregation efficiencies. J. Atmos. Sci., 35, 882889, https://doi.org/10.1175/1520-0469(1978)035<0882:TAOSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettersen, C., R. Bennartz, A. J. Merrelli, M. D. Shupe, D. D. Turner, and V. P. Walden, 2018: Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations. Atmos. Chem. Phys., 18, 47154735, https://doi.org/10.5194/acp-18-4715-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow? The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C., 2000: Inverse Methods for Atmospheric Sounding. World Scientific Publishing, 240 pp.

    • Crossref
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. A. Francis, 2006: The Arctic on the fast track of change. Weather, 61, 6569, https://doi.org/10.1256/wea.197.05.

  • Shepherd, A., and D. Wingham, 2007: Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science, 315, 15291532, https://doi.org/10.1126/science.1136776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steensen, B. M., H. Olafsson, and M. O. Jonassen, 2011: An extreme precipitation event in central Norway. Tellus, 63, 675686, https://doi.org/10.1111/j.1600-0870.2011.00522.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. Winker, J. Pelon, C. Trepte, D. Vane, C. Yuhas, T. L’Ecuyer, and M. Lebsock, 2018: CloudSat and CALIPSO within the A-Train: Ten years of actively observing the Earth system. Bull. Amer. Meteor. Soc., 99, 569581, https://doi.org/10.1175/BAMS-D-16-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, and H. Sodemann, 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N—A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113, D05102, https://doi.org/10.1029/2007JD009006.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. Rasmussen, E. Petro, J. Y. Trepanier, M. Colli, and L. D. Lanza, 2015: Impact of wind direction, wind speed, and particle characteristics on the collection efficiency of the double fence intercomparison reference. J. Appl. Meteor. Climatol., 54, 19181930, https://doi.org/10.1175/JAMC-D-15-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiira, J., D. N. Moisseev, A. von Lerber, D. Ori, A. Tokay, L. F. Bliven, and W. Petersen, 2016: Ensemble mean density and its connection to other microphysical properties of falling snow as observed in southern Finland. Atmos. Meas. Tech., 9, 48254841, https://doi.org/10.5194/amt-9-4825-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Tricht, K., and Coauthors, 2016: Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun., 7, 10266, https://doi.org/10.1038/ncomms10266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vavrus, S., 2007: The role of terrestrial snow cover in the climate system. Climate Dyn., 29, 7388, https://doi.org/10.1007/s00382-007-0226-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and B. Guan, 2017: Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci., 10, 179183, https://doi.org/10.1038/ngeo2894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, https://doi.org/10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, M. A., K. Isaksen, A. Petersen-Øverlier, K. Ødemark, T. Reitan, and R. Brækkan, 2015: Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: Results of a Norwegian field study. Hydrol. Earth Syst. Sci., 19, 951967, https://doi.org/10.5194/hess-19-951-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., 2011: Estimation of snow microphysical properties with application to millimeter wavelength radar retrievals for snowfall rate. Ph.D. dissertation, Colorado State University, 248 pp., http://hdl.handle.net/10217/48170.

  • Wood, N. B., and T. S. L’Ecuyer, 2018: Level 2C snow profile product process description and interface control document, product version P1_R05. NASA Jet Propulsion Laboratory CloudSat project document revision 0, 26 pp., http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf.

  • Wood, N. B., T. S. L’Ecuyer, A. J. Heymsfield, G. L. Stephens, D. R. Hudak, and P. Rodriguez, 2014: Estimating snow microphysical properties using collocated multisensor observations. J. Geophys. Res. Atmos., 119, 89418961, https://doi.org/10.1002/2013JD021303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, A. J. Heymsfield, and G. L. Stephens, 2015: Microphysical constraints on millimeter-wavelength scattering properties of snow particles. J. Appl. Meteor. Climatol., 54, 909931, https://doi.org/10.1175/JAMC-D-14-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2014: Double Fence Intercomparison Reference (DFIR) vs. Bush Gauge for “true” snowfall measurement. J. Hydrol., 509, 94100, https://doi.org/10.1016/j.jhydrol.2013.08.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., B. E. Goodison, J. R. Metcalfe, V. S. Golubev, R. Bates, T. Pangburn, and C. L. Hanson, 1998: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic. Technol., 15, 5468, https://doi.org/10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., D. Kane, Z. Zhang, D. Legates, and B. Goodison, 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32, L19501, https://doi.org/10.1029/2005GL024057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 649 182 15
PDF Downloads 457 123 9