Abstract
A field experiment was performed in Oak Ridge, Tennessee, with four instrumented towers placed over grass at increasing distances (4, 30, 50, 124, and 300 m) from a built-up area. Stations were aligned in such a way to simulate the impact of small-scale encroachment on temperature observations. As expected, temperature observations were warmest for the site closest to the built environment with an average temperature difference of 0.31° and 0.24°C for aspirated and unaspirated sensors, respectively. Mean aspirated temperature differences were greater during the evening (0.47°C) than during the day (0.16°C). This was particularly true for evenings following greater daytime solar insolation (20+ MJ day−1) with surface winds from the direction of the built environment where mean differences exceeded 0.80°C. The impact of the built environment on air temperature diminished with distance with a warm bias only detectable out to tower B′ located 50 m away. The experimental findings were comparable to a known case of urban encroachment at a U.S. Climate Reference Network station in Kingston, Rhode Island. The experimental and operational results both lead to reductions in the diurnal temperature range of ~0.39°C for fan-aspirated sensors. Interestingly, the unaspirated sensor had a larger reduction in diurnal temperature range (DTR) of 0.48°C. These results suggest that small-scale urban encroachment within 50 m of a station can have important impacts on daily temperature extrema (maximum and minimum) with the magnitude of these differences dependent upon prevailing environmental conditions and sensing technology.
© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).