The Influences of Urban Building Complexes on the Ambient Flows over the Washington–Reston Region

Da-Lin Zhang State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Da-Lin Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1725-283X
,
Menglin S. Jin Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Menglin S. Jin in
Current site
Google Scholar
PubMed
Close
,
Yixuan Shou Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration, National Satellite Meteorological Center, Beijing China, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Yixuan Shou in
Current site
Google Scholar
PubMed
Close
, and
Chunqing Dong Shanxi Meteorological Observatory, Taiyuan, Shanxi Province, China, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Chunqing Dong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper examines the collective impacts of urban building complexes on the planetary boundary layer (PBL) winds using both observations and a mesoscale model. Horizontal winds measured on the rooftops of federal buildings over the regions of Washington, D.C., and a small city nearby (i.e., Reston, Virginia) show the blocking effects of urban building complexes on the downstream winds during the daytime of 9 July 2007. A modeling study of the case using a coupled version of the Weather Research and Forecasting (WRF)–multilayer urban canopy model in which the observed building height and density information is implemented to advance the calculations of momentum and heat, reproduces the rooftop-observed wind patterns and the related urban heat island effects, especially the wake flows on the downstream sides of the above-mentioned two cities. Results show that under daytime conditions the building complexes can collectively form a mesoscale wake on the downwind side of each city, about 2–10 km away, horizontally from the edge of the building complexes. The wake flow may extend to much higher levels than the building tops, depending on the incoming flow strength, the static stability in the PBL, the height of the building complexes, and the time of the day because of the strength of surface insolation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Da-Lin Zhang, dalin@umd.edu

Abstract

This paper examines the collective impacts of urban building complexes on the planetary boundary layer (PBL) winds using both observations and a mesoscale model. Horizontal winds measured on the rooftops of federal buildings over the regions of Washington, D.C., and a small city nearby (i.e., Reston, Virginia) show the blocking effects of urban building complexes on the downstream winds during the daytime of 9 July 2007. A modeling study of the case using a coupled version of the Weather Research and Forecasting (WRF)–multilayer urban canopy model in which the observed building height and density information is implemented to advance the calculations of momentum and heat, reproduces the rooftop-observed wind patterns and the related urban heat island effects, especially the wake flows on the downstream sides of the above-mentioned two cities. Results show that under daytime conditions the building complexes can collectively form a mesoscale wake on the downwind side of each city, about 2–10 km away, horizontally from the edge of the building complexes. The wake flow may extend to much higher levels than the building tops, depending on the incoming flow strength, the static stability in the PBL, the height of the building complexes, and the time of the day because of the strength of surface insolation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Da-Lin Zhang, dalin@umd.edu
Save
  • Ackerman, B., 1974: Wind fields over St. Louis metropolitan area. J. Air Pollut. Control Assoc., 24, 232236.

  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, https://doi.org/10.1002/joc.859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, https://doi.org/10.1029/96RG02623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burian, S., N. Augustus, I. Jeyachandran, and M. Brown, 2008: National Building Statistics Database: Version 2. LA-UR-08-1921, 78 pp.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Counihan, J., J. C. R. Hunt, and P. S. Jackson, 1974: Wakes behind two-dimensional surface obstacles in turbulent boundary layers. J. Fluid Mech., 64, 529563, https://doi.org/10.1017/S0022112074002539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dou, J., Y. Wang, and S. Miao, 2015: Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteor. Climatol., 54, 94105, https://doi.org/10.1175/JAMC-D-13-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., R. Britter, and P. Franzese, 2003: A baseline urban dispersion model evaluated with Salt Lake City and Los Angeles tracer data. Atmos. Environ., 37, 50695082, https://doi.org/10.1016/j.atmosenv.2003.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., W. J. Callahan, W. R. Pendergrass III, R. J. Dobosy, and E. Novakovskaia, 2012: Urban turbulence in space and in time. J. Appl. Meteor. Climatol., 51, 205218, https://doi.org/10.1175/JAMC-D-11-015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., W. R. Pendergrass III, C. A. Vogel, R. S. Artz, 2014: On the drag and heat of Washington, D.C., and New York City. J. Appl. Meteor. Climatol., 53, 14541470, https://doi.org/10.1175/JAMC-D-13-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., C. J. Abel, J. A. Peterka, and H. Woo, 1978: Kinematical studies of the flows around free or surface mounted obstacle: Applying topology to flow visualization. J. Fluid Mech., 86, 179200, https://doi.org/10.1017/S0022112078001068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further development of the convection, viscous sublayer and turbulent closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M., 2012: Developing an index to measure urban heat island effect using satellite land skin temperature and land cover observations. J. Climatol., 25, 61936201, https://doi.org/10.1175/JCLI-D-11-00509.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M., 2018: The relationship between surface temperatures and building electricity use: A potential new weather application. J. Build. Sustainability, 1, 2838.

    • Search Google Scholar
    • Export Citation
  • Jin, M., R. E. Dickinson, and D.-L. Zhang, 2005: The footprint of urban areas on global climate as characterized by MODIS. J. Climatol., 18, 15511565, https://doi.org/10.1175/JCLI3334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, S. J., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and J. V. Clark, 2007: Flow variability in a North American downtown street canyon. J. Appl. Meteor. Climatol., 46, 851877, https://doi.org/10.1175/JAM2494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kropfli, R. A., and N. M. Kohn, 1978: Persistent horizontal rolls in the urban mixed layer as revealed by dual-Doppler radar. J. Appl. Meteor., 17, 669676, https://doi.org/10.1175/1520-0450(1978)017<0669:PHRITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., X. Cui, and D.-L. Zhang, 2017: Sensitivity of the initiation of an isolated thunderstorm over the Beijing metropolitan region to urbanization, terrain morphology and cold outflows. Quart. J. Roy. Meteor. Soc., 143, 31533164, https://doi.org/10.1002/qj.3169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and Coauthors, 2018: SURF: Understanding and predicting urban convection and haze. Bull. Amer. Meteor. Soc., 99, 13911413, https://doi.org/10.1175/BAMS-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manley, G., 1958: On the frequency of snowfall in metropolitan England. Quart. J. Roy. Meteor. Soc., 84, 7072, https://doi.org/10.1002/qj.49708435910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surfaces exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104, 261304, https://doi.org/10.1023/A:1016099921195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meroney, R. N., 1982: Turbulent diffusion near buildings. Engineering Meteorology, E. J. Plate, Ed., Elsevier Scientific, 481–525.

  • Miao, S., F. Chen, M. A. LeMone, M. Tewari, Q. Li, and Y. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484501, https://doi.org/10.1175/2008JAMC1909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, M. A., E. R. Pardyjak, J. C. Klewicki, S. U. Pol, and M. J. Brown, 2007: Properties of the wind field within the Oklahoma City Park Avenue street canyon. Part I: Mean flow and turbulence statistics. J. Appl. Meteor. Climatol., 46, 20382054, https://doi.org/10.1175/2006JAMC1427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nunez, M., and T. R. Oke, 1977: The energy balance of an urban canyon. J. Appl. Meteor., 16, 1119, https://doi.org/10.1175/1520-0450(1977)016<0011:TEBOAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124, https://doi.org/10.1002/qj.49710845502.

    • Search Google Scholar
    • Export Citation
  • Rizwan, A. M., L. Y. C. Dennis, and C. Liu, 2008: A review on the generation, determination and mitigation of urban heat island. J. Environ. Sci., 20, 120128, https://doi.org/10.1016/S1001-0742(08)60019-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., 2007: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126, 941990, https://doi.org/10.1002/qj.49712656409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., V. Grubišić, and P. K. Smolarkiewicz, 1999: Vorticity and potential vorticity in mountain wakes. J. Atmos. Sci., 56, 27962810, https://doi.org/10.1175/1520-0469(1999)056<2796:VAPVIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Wong, K. K., and R. A. Dirks, 1978: Mesoscale perturbations on airflow in the urban mixing layer. J. Appl. Meteor., 17, 677688, https://doi.org/10.1175/1520-0450(1978)017<0677:MPOAIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zajic, D., H. J. S. Fernando, R. Calhoun, M. Princevac, M. J. Brown, and E. R. Pardyjak, , 2011: Flow and turbulence in an urban canyon. J. Appl. Meteor. Climatol., 50, 203223, https://doi.org/10.1175/2010JAMC2525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and W.-Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary-layer parameterizations. J. Appl. Meteor., 43, 157169, https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Shou, and R. R. Dickerson, 2009: Upstream urbanization exacerbates urban heat island effects. Geophys. Res. Lett., 36, L24401, https://doi.org/10.1029/2009GL041082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Shou, R. R. Dickerson, and F. Chen, 2011: Impact of upstream urbanization on the urban heat island effects along the Washington–Baltimore corridor. J. Appl. Meteor. Climatol., 50, 20122029, https://doi.org/10.1175/JAMC-D-10-05008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 490 226 19
PDF Downloads 514 112 3