Abstract
This paper examines the collective impacts of urban building complexes on the planetary boundary layer (PBL) winds using both observations and a mesoscale model. Horizontal winds measured on the rooftops of federal buildings over the regions of Washington, D.C., and a small city nearby (i.e., Reston, Virginia) show the blocking effects of urban building complexes on the downstream winds during the daytime of 9 July 2007. A modeling study of the case using a coupled version of the Weather Research and Forecasting (WRF)–multilayer urban canopy model in which the observed building height and density information is implemented to advance the calculations of momentum and heat, reproduces the rooftop-observed wind patterns and the related urban heat island effects, especially the wake flows on the downstream sides of the above-mentioned two cities. Results show that under daytime conditions the building complexes can collectively form a mesoscale wake on the downwind side of each city, about 2–10 km away, horizontally from the edge of the building complexes. The wake flow may extend to much higher levels than the building tops, depending on the incoming flow strength, the static stability in the PBL, the height of the building complexes, and the time of the day because of the strength of surface insolation.
© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).