The Characteristics of Spatial and Temporal Variations in the PBL during the Landfall of Tropical Cyclones across East China

Yong Han Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, and School of Atmospheric Sciences, Nanjing University, Nanjing, and Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, China

Search for other papers by Yong Han in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3297-2782
,
Yiwen Zhou School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Yiwen Zhou in
Current site
Google Scholar
PubMed
Close
,
Jianping Guo State Key Laboratory of Severe Weather, and Key Laboratory of Atmospheric Chemistry of the China Meteorology Administration, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Jianping Guo in
Current site
Google Scholar
PubMed
Close
,
Yonghua Wu NOAA/Center for Earth System Sciences and Remote Sensing Technologies (CREST), City College of the City University of New York, New York, New York

Search for other papers by Yonghua Wu in
Current site
Google Scholar
PubMed
Close
,
Tijian Wang School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Tijian Wang in
Current site
Google Scholar
PubMed
Close
,
Bingliang Zhuang School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Bingliang Zhuang in
Current site
Google Scholar
PubMed
Close
, and
Mengmeng Li School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Mengmeng Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The planetary boundary layer (PBL) controls the exchange of momentum and energy between the ground surface and the free troposphere, but few studies have been involved in the connection of the PBL with the development and extinction of tropical cyclones (TCs). Studies on the PBL usually need high-resolution soundings in the lowest troposphere that are otherwise quite rare with traditional technology. Here, 1-s resolution L-band radiosonde data are acquired to study the variations in PBL characteristics associated with the development of TCs in eastern China. The strong variations in the vertical profiles of temperature, relative humidity, and wind speed in the PBL during the landfall of a TC are revealed. In addition, four typical methods, including the virtual potential temperature method, Holzworth method, bulk Richardson number method, and potential temperature gradient method, are applied to estimate the PBL height (PBLH). The results indicate that the PBLHs derived by these methods vary by several hundred meters, which may be related to their different definitions of kinetic or thermodynamic theories. Furthermore, the PBLH was found to display a slight upward tendency during the landfall of TC.

Yong Han and Yiwen Zhou are co-first authors with equal contributions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong Han, hany66@mail.sysu.edu.cn.

Abstract

The planetary boundary layer (PBL) controls the exchange of momentum and energy between the ground surface and the free troposphere, but few studies have been involved in the connection of the PBL with the development and extinction of tropical cyclones (TCs). Studies on the PBL usually need high-resolution soundings in the lowest troposphere that are otherwise quite rare with traditional technology. Here, 1-s resolution L-band radiosonde data are acquired to study the variations in PBL characteristics associated with the development of TCs in eastern China. The strong variations in the vertical profiles of temperature, relative humidity, and wind speed in the PBL during the landfall of a TC are revealed. In addition, four typical methods, including the virtual potential temperature method, Holzworth method, bulk Richardson number method, and potential temperature gradient method, are applied to estimate the PBL height (PBLH). The results indicate that the PBLHs derived by these methods vary by several hundred meters, which may be related to their different definitions of kinetic or thermodynamic theories. Furthermore, the PBLH was found to display a slight upward tendency during the landfall of TC.

Yong Han and Yiwen Zhou are co-first authors with equal contributions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong Han, hany66@mail.sysu.edu.cn.
Save
  • Anderson, P. S., 2009: Measurement of Prandtl number as a function of Richardson number avoiding self-correlation. Bound.-Layer Meteor., 131, 345362, https://doi.org/10.1007/s10546-009-9376-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and S. W. Chang, 1978: Response of the hurricane boundary-layer to changes of sea surface temperature in a numerical model. J. Atmos. Sci., 35, 12401255, https://doi.org/10.1175/1520-0469(1978)035<1240:ROTHBL>2.0.CO;2 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, J. F., 2014: Progress in observing and modelling the urban boundary layer. Urban Climate, 10, 216240, https://doi.org/10.1016/j.uclim.2014.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, https://doi.org/10.1175/2007MWR2032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackwell, K. G., 2000: The evolution of Hurricane Danny (1997) at landfall: Doppler-observed eyewall replacement, vortex contraction/intensification, and low-level wind maxima. Mon. Wea. Rev., 128, 40024016, https://doi.org/10.1175/1520-0493(2000)129<4002:TEOHDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, N. H., X. Xu, L. L. Song, L. N. Bai, J. Ming, and Y. Wang, 2014: Dynamic impact of the vertical shear of gradient wind on the tropical cyclone boundary layer wind field. Acta Meteor. Sin., 28, 127138, https://doi.org/10.1007/s13351-014-3058-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casasanta, G., I. Pietroni, I. Petenko, and S. Argentini, 2014: Erratum to: Observed and modelled convective mixing-layer height at Dome C, Antarctica. Bound.-Layer Meteor., 153, 163164, https://doi.org/10.1007/s10546-014-9951-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., H. Luo, Y. Duan, and H. Yu, 2004: An overview on tropical cyclone and tropical meteorology research progress. Adv. Atmos. Sci., 21, 505, https://doi.org/10.1007/BF02915577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, C., Q. Wang, J. A. Kalogiros, D. H. Lenschow, Z. Gao, and M. Zhou, 2014: Determining boundary-layer height from aircraft measurements. Bound.-Layer Meteor., 152, 277302, https://doi.org/10.1007/s10546-014-9929-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, F., D. R. Middleton, and K. E. Bozier, 2007: Urban air pollution modelling and measurements of boundary layer height. Atmos. Environ., 41, 40404049, https://doi.org/10.1016/j.atmosenv.2007.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and M. Lystad, 1977: The Ekman layer of a circular vortex - A numerical and theoretical study. Geophys. Norv., 31, 116.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., J. Pelon, P. H. Flamant, and P. Durand, 1997: Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound.-Layer Meteor., 83, 247284, https://doi.org/10.1023/A:1000258318944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granados-Munoz, M. J., F. Navas-Guzman, J. A. Bravo-Aranda, J. L. Guerrero-Rascado, H. Lyamani, J. Fernandez-Galvez, and L. Alados-Arboledas, 2012: Automatic determination of the planetary boundary layer height using lidar: One-year analysis over southeastern Spain. J. Geophys. Res., 117, D18208, https://doi.org/10.1029/2012JD017524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J. P., and Coauthors, 2016: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys., 16, 13 30913 319, https://doi.org/10.5194/acp-16-13309-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1969: The thickness of the planetary boundary layer. Atmos. Environ., 3, 519536, https://doi.org/10.1016/0004-6981(69)90042-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzworth, G. C., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235242, https://doi.org/10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, J. R., A. L. Doggett, R. E. Peterson, P. G. Black, J. L. Schroeder, D. A. Smith, and J. P. Dunyak, 2004: Transition in onshore hurricane boundary layer winds during the landfall of Hurricane Lili (2002). 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 13D.3, https://ams.confex.com/ams/pdfpapers/75450.pdf.

  • Hu, X. M., J. W. Nielsen-Gammon, and F. Q. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, M., Y. Wang, W. Lou, and S. Cao, 2018: Multi-scale simulation of time-varying wind fields for Hangzhou Jiubao Bridge during Typhoon Chan-hom. J. Wind Eng. Ind. Aerodyn., 179, 419437, https://doi.org/10.1016/j.jweia.2018.06.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1995: Atmospheric boundary layer flows: Their structure and measurement. Bound.-Layer Meteor., 72, 213214, https://doi.org/10.1007/BF00712396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2002: The wind-field structure of the tropical cyclone boundary layer. Ph.D. thesis, Dept. of Mathematics and Statistics, Monash University, 350 pp. [Available from Dept. of Mathematics and Statistics, Monash University, VIC 3800, Australia.]

  • Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, https://doi.org/10.1175/MWR-D-11-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Y. Q. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., J. Schwendike, and H. Ramsay, 2016: Why is the tropical cyclone boundary layer not “well mixed”? J. Atmos. Sci., 73, 957973, https://doi.org/10.1175/JAS-D-15-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leventidou, E., P. Zanis, D. Balis, E. Giannakaki, I. Pytharoulis, and V. Amiridis, 2013: Factors affecting the comparisons of planetary boundary layer height retrievals from CALIPSO, ECMWF and radiosondes over Thessaloniki, Greece. Atmos. Environ., 74, 360366, https://doi.org/10.1016/j.atmosenv.2013.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2017: Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev., 4, 810833, https://doi.org/10.1093/nsr/nwx117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J., L. G. Wu, G. J. Gu, and Q. Y. Liu, 2016: Rapid weakening of Typhoon Chan-Hom (2015) in a monsoon gyre. J. Geophys. Res. Atmos., 121, 95089520, https://doi.org/10.1002/2016JD025214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2010: Locating convection in landfalling tropical cyclones: A Gis-based analysis of radar reflectivities and comparison to lightning-based observations. Phys. Geogr., 31, 385406, https://doi.org/10.2747/0272-3646.31.5.385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, J., J. A. Zhang, R. F. Rogers, F. D. Marks, Y. Wang, and N. H. Cai, 2014: Multiplatform observations of boundary layer structure in the outer rainbands of landfalling typhoons. J. Geophys. Res. Atmos., 119, 77997814, https://doi.org/10.1002/2014JD021637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, M. S., and F. J. Merceret, 1976: Note on several low-layer features of Hurricane Eloise (1975). Mon. Wea. Rev., 104, 967971, https://doi.org/10.1175/1520-0493(1976)104<0967:ANOSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 2005: The atmospheric boundary layer. Environmental Stratified Flows, V. Armenio and S. Sarkar, Eds., CISM Courses and Lectures, Vol. 479, Springer, 179–232.

    • Crossref
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, https://doi.org/10.1023/A:1022146015946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 2002: Boundary Layer Climates. 2nd ed. Taylor & Francis, 464 pp.

    • Crossref
    • Export Citation
  • Pal, S., 2014: Monitoring depth of shallow atmospheric boundary layer to complement LiDAR measurements affected by partial overlap. Remote Sens., 6, 84688493, https://doi.org/10.3390/rs6098468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1987: Changes in the low-level kinematic and thermodynamic structure of Hurricane Alicia (1983) at landfall. Mon. Wea. Rev., 115, 7599, https://doi.org/10.1175/1520-0493(1987)115<0075:CITLLK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary-layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917, https://doi.org/10.1175/1520-0493(1990)118<0891:BLSADI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, D. V. B., and D. H. Prasad, 2007: Sensitivity of tropical cyclone intensification to boundary layer and convective processes. Nat. Hazards, 41, 429445, https://doi.org/10.1007/s11069-006-9052-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayhun, K. Z., D. A. Quadir, M. A. Mannan Chowdhury, M. N. Ahasan, and M. S. Haque, 2015: Simulation of structure, track and landfall of Tropical Cyclone Bijli using WRF-ARW Model. J. Bangladesh Acad. Sci., 39, 157167, https://doi.org/10.3329/jbas.v39i2.25949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sateesh, M., C. V. Srinivas, and P. V. S. Raju, 2017: Numerical simulation of tropical cyclone thane: Role of boundary layer and surface drag parameterization schemes. Nat. Hazards, 89, 12551271, https://doi.org/10.1007/s11069-017-3020-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, R., and G. M. Barnes, 2005: Low-level kinematic, thermodynamic, and reflectivity fields associated with Hurricane Bonnie (1998) at landfall. Mon. Wea. Rev., 133, 32433259, https://doi.org/10.1175/MWR3027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seibert, P., F. Beyrich, S. E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and inter-comparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, https://doi.org/10.1016/S1352-2310(99)00349-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, https://doi.org/10.1029/2009JD013680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary-layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998, https://doi.org/10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J., and J. Huang, 2015: Monitoring spatio-temporal distribution of rice planting area in the Yangtze River delta region using MODIS images. Remote Sens., 7, 88838905, https://doi.org/10.3390/rs70708883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S. Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF Model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281, https://doi.org/10.1007/s10546-010-9583-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and S. Vogl, 2008: A simple model of the hurricane boundary layer revisited. Quart. J. Roy. Meteor. Soc., 134, 337351, https://doi.org/10.1002/qj.216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1989: Structure of the Atmospheric Boundary Layer. Prentice Hall, 317 pp.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Tang, X., and Z. M. Tan, 2007: Boundary-layer wind structure in a landfalling typhoon. Proc. Third China-Korea-Japan Joint Conf. on Meteorology, Hakodate, Hokkaido, Japan, Japan GLOBEC Office, http://cstm.cnki.net/stmt/TitleBrowse/KnowledgeNet/ZGQX200711014222?db=STMI8515.

  • Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291304, https://doi.org/10.1175/1520-0493(1994)122<0291:TSDADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., D. Wadhera, M. D. Powell, and Y. Z. Chen, 2009: A hurricane boundary layer and wind field model for use in engineering applications. J. Appl. Meteor. Climatol., 48, 381405, https://doi.org/10.1175/2008JAMC1841.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245269, https://doi.org/10.1007/BF02430331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, https://doi.org/10.1007/s00703-003-0055-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. J., 2015: The effects of vortex structure and vortex translation on the tropical cyclone boundary layer wind field. J. Adv. Model. Earth Syst., 7, 188214, https://doi.org/10.1002/2013MS000299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. J., R. K. Taft, B. D. McNoldy, and W. H. Schubert, 2013: Shock-like structures in the tropical cyclone boundary layer. J. Adv. Model. Earth Syst., 5, 338353, https://doi.org/10.1002/jame.20028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Y. H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 6780, https://doi.org/10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, D. M., J. Z. Min, F. F. Shen, J. M. Ban, and P. Chen, 2016: Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons. J. Adv. Model. Earth Syst., 8, 10141028, https://doi.org/10.1002/2016MS000674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, https://doi.org/10.1175/MWR-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., J. Guo, Y. Miao, H. Liu, Z. Li, and P. Zhai, 2016: Planetary boundary layer height from CALIOP compared to radiosonde over China. Atmos. Chem. Phys., 16, 99519963, https://doi.org/10.5194/acp-16-9951-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and Coauthors, 2018: On the summertime planetary boundary layer with different thermodynamic stability in China: A radiosonde perspective. J. Climate, 31, 14511465, https://doi.org/10.1175/JCLI-D-17-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2018: Climatology of cloud-base height from long-term radiosonde measurements in China. Adv. Atmos. Sci., 35, 158168, https://doi.org/10.1007/s00376-017-7096-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., and A. Baklanov, 2002: Calculation of the height of the stable boundary layer in practical applications. Bound.-Layer Meteor., 105, 389409, https://doi.org/10.1023/A:1020376832738.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1899 271 8
PDF Downloads 502 131 4