Doppler Radar Measurements of Spatial Turbulence Intensity in the Atmospheric Boundary Layer

James B. Duncan Jr. National Wind Institute, Texas Tech University, Lubbock, Texas

Search for other papers by James B. Duncan Jr. in
Current site
Google Scholar
PubMed
Close
,
Brian D. Hirth National Wind Institute, Texas Tech University, Lubbock, Texas

Search for other papers by Brian D. Hirth in
Current site
Google Scholar
PubMed
Close
, and
John L. Schroeder Department of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by John L. Schroeder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Remote sensing instruments that scan have the ability to provide high-resolution spatial measurements of atmospheric boundary layer winds across a region. However, the time required to collect the volume of measurements used to produce this spatial representation of atmospheric winds typically limits the extraction of atmospheric turbulence information using traditional temporal analysis techniques. To overcome this constraint, a spatial turbulence intensity (STI) metric was developed to quantify atmospheric turbulence intensity (TI) through analysis of spatial wind field variability. The methods used to determine STI can be applied throughout the measurement domain to transform the spatially distributed velocity fields to analogous measurement maps of STI. This method enables a comprehensive spatial characterization of atmospheric TI. STI efficacy was examined across a range of wind speeds and atmospheric stability regimes using both single- and dual-Doppler measurements. STI demonstrated the ability to capture rapid fluctuations in TI and was able to discern large-scale TI trends consistent with the early evening transition. The ability to spatially depict atmospheric TI could benefit a variety of research disciplines such as the wind energy industry, where an understanding of wind plant complex flow spatiotemporal variability is limited.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James B Duncan Jr., james.b.duncan@ttu.edu

Abstract

Remote sensing instruments that scan have the ability to provide high-resolution spatial measurements of atmospheric boundary layer winds across a region. However, the time required to collect the volume of measurements used to produce this spatial representation of atmospheric winds typically limits the extraction of atmospheric turbulence information using traditional temporal analysis techniques. To overcome this constraint, a spatial turbulence intensity (STI) metric was developed to quantify atmospheric turbulence intensity (TI) through analysis of spatial wind field variability. The methods used to determine STI can be applied throughout the measurement domain to transform the spatially distributed velocity fields to analogous measurement maps of STI. This method enables a comprehensive spatial characterization of atmospheric TI. STI efficacy was examined across a range of wind speeds and atmospheric stability regimes using both single- and dual-Doppler measurements. STI demonstrated the ability to capture rapid fluctuations in TI and was able to discern large-scale TI trends consistent with the early evening transition. The ability to spatially depict atmospheric TI could benefit a variety of research disciplines such as the wind energy industry, where an understanding of wind plant complex flow spatiotemporal variability is limited.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James B Duncan Jr., james.b.duncan@ttu.edu
Save
  • Aitken, M. L., R. M. Banta, Y. L. Pichugina, and J. K. Lundquist, 2014: Quantifying wind turbine wake characteristics from scanning remote sensor data. J. Atmos. Oceanic Technol., 31, 765787, https://doi.org/10.1175/JTECH-D-13-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banakh, V. A., and I. N. Smalikho, 2013: Coherent Doppler Wind Lidars in a Turbulent Atmosphere. Artech House, 248 pp.

  • Banakh, V. A., I. N. Smalikho, F. Köpp, and C. Werner, 1999: Measurements of turbulent energy dissipation rate with a CW Doppler lidar in the atmospheric boundary layer. J. Atmos. Oceanic Technol., 16, 10441061, https://doi.org/10.1175/1520-0426(1999)016<1044:MOTEDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. S. Darby, P. Kaufmann, D. H. Levinson, and C. J. Zhu, 1999: Wind-flow patterns in the Grand Canyon as revealed by Doppler lidar. J. Appl. Meteor., 38, 10691083, https://doi.org/10.1175/1520-0450(1999)038<1069:WFPITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, https://doi.org/10.1175/JAS3776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and Coauthors, 2014: 3D wind and turbulence characteristics of the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 95, 743756, https://doi.org/10.1175/BAMS-D-12-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodini, N., D. Zardi, and J. K. Lundquist, 2017: Three-dimensional structure of wind turbine wakes as measured by scanning lidar. Atmos. Meas. Tech., 10, 28812896, https://doi.org/10.5194/amt-10-2881-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T., and Coauthors, 2017: Evaluation of turbulence measurement techniques from a single Doppler lidar. Atmos. Meas. Tech. Discuss, 10, 30213039, https://doi.org/10.5194/amt-10-3021-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calhoun, R., and R. Heap, 2006: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 Dispersion Experiment. J. Appl. Meteor. Climatol., 45, 11161126, https://doi.org/10.1175/JAM2391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y., C. Sayde, Q. Li, J. Basara, J. Selker, E. Tanner, and P. Gentine, 2017: Failure of Taylor’s hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements. Geophys. Res. Lett., 44, 42874295, https://doi.org/10.1002/2017GL073499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, F., C. G. Collier, G. N. Pearson, and K. E. Bozier, 2004: Doppler lidar measurements of turbulent structure function over an urban area. J. Atmos. Oceanic Technol., 21, 753761, https://doi.org/10.1175/1520-0426(2004)021<0753:DLMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1979: Dual-Doppler radar coverage as a function of measurement accuracy and spatial resolution. J. Appl. Meteor., 18, 12291233, https://doi.org/10.1175/1520-0450-18.9.1229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Álamo, J. C., and J. Jiménez, 2009: Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid. Mech., 640, 526, https://doi.org/10.1017/S0022112009991029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, J. B., B. D. Hirth, and J. L. Schroeder, 2019: Enhanced estimation of boundary layer advective properties to improve space-to-time conversion processes for wind energy applications. Wind Energy, https://doi.org/10.1002/we.2350, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eberhard, W. I., R. E. Cupp, and K. R. Healy, 1989: Doppler lidar measurement of profiles of turbulence and momentum flux. J. Atmos. Oceanic Technol., 6, 809819, https://doi.org/10.1175/1520-0426(1989)006<0809:DLMOPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and L. Cornman, 2002: Estimating spatial velocity statistics with coherent Doppler lidar. J. Atmos. Oceanic Technol., 19, 355366, https://doi.org/10.1175/1520-0426-19.3.355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18, 376393, https://doi.org/10.1175/1520-0426(2001)018<0376:HRDLFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunter, W. S., J. L. Schroeder, and B. D. Hirth, 2015: Validation of dual-Doppler wind profiles with in situ anemometry. J. Atmos. Oceanic Technol., 32, 943960, https://doi.org/10.1175/JTECH-D-14-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, C. W., M. Froidevaux, V. Simenov, N. Vercauteren, C. Barry, and M. B. Parlange, 2012: The effect of scale on the applicability of Taylor’s frozen turbulence hypothesis in the atmospheric boundary layer. Bound.-Layer Meteor., 143, 379391, https://doi.org/10.1007/s10546-012-9701-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, M., R. Calhoun, H. J. S. Fernando, A. Wieser, A. Dörnbrack, M. Weissmann, G. Mayr, and R. Newsom, 2010: Coplanar Doppler lidar retrieval of rotors from T-REX. J. Atmos. Sci., 67, 713729, https://doi.org/10.1175/2009JAS3016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, W. S. Gunter, and J. G. Guynes, 2012: Measuring a utility-scale wind turbine wake using the TTUKa mobile research radars. J. Atmos. Oceanic Technol., 29, 765771, https://doi.org/10.1175/JTECH-D-12-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroder, W. S. Gunter, and J. G. Guynes, 2015: Coupling Doppler radar-derived wind maps with operational turbine data to document wind farm complex flows. Wind Energy, 18, 529540, https://doi.org/10.1002/we.1701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, Z. Irons, and K. Walter, 2016: Dual-Doppler measurements of a wind ramp event at an Oklahoma wind plant. Wind Energy, 19, 953962, https://doi.org/10.1002/we.1867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, J. D., 1997: Wind Loading of Structures. Taylor and Francis, 392 pp.

  • Kalverla, P., G. J. Steeneveld, R. Ronda, and A. A. M. Holtslag, 2019: Evaluation of three mainstream numerical weather prediction models with observations from meteorological mast IJmuiden at the North Sea. Wind Energy, 22, 3448, https://doi.org/10.1002/we.2267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Käsler, Y., S. Rahm, R. Simmet, and M. Kühm, 2010: Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar. J. Atmos. Oceanic Technol., 27, 15291532, https://doi.org/10.1175/2010JTECHA1483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, R. A., R. Calhoun, B. Billings, and J. Doyle, 2011: Wind turbulence estimates in a valley by coherent Doppler lidar. Meteor. Appl., 18, 361371, https://doi.org/10.1002/met.263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, R. A., A. Choukulkar, R. Calhoun, J. Fine, A. Oliver, and K. S. Barr, 2013: Coherent Doppler lidar for wind farm characterization. Wind Energy, 16, 189206, https://doi.org/10.1002/we.539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lappe, U. O., and B. Davidson, 1963: On the range of validity of Taylor’s hypothesis and the Kolmogoroff spectral law. J. Atmos. Sci., 20, 569576, https://doi.org/10.1175/1520-0469(1963)020<0569:OTROVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., 1971: Measurement of wind and wind field by microwave Doppler radar techniques. Atmos. Environ., 5, 691694, https://doi.org/10.1016/0004-6981(71)90126-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., L. K. Berg, W. J. Shaw, and M. L. Fischer, 2015: Turbine-scale wind field measurements using dual-Doppler lidar. Wind Energy, 18, 219235, https://doi.org/10.1002/we.1691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence—Models and Methods for Engineering Applications. John Wiley and Sons, 397 pp.

  • Sathe, A., and J. Mann, 2013: A review of turbulence measurements using ground-based wind lidars. Atmos. Meas. Tech., 6, 31473167, https://doi.org/10.5194/amt-6-3147-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Taylor, B. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A, 476490, https://doi.org/10.1098/rspa.1938.0032.

  • Wang, H., R. J. Barthelmie, A. Clifton, and S. C. Pryor, 2015: Wind measurements from arc scans with Doppler wind lidar. J. Atmos. Oceanic Technol., 32, 20242040, https://doi.org/10.1175/JTECH-D-14-00059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wharton, S., and J. K. Lundquist, 2012: Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm. Wind Energy, 15, 525546, https://doi.org/10.1002/we.483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, https://doi.org/10.1023/A:1018966204465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, G. E., and J. W. Deardorff, 1976: On the use of Taylor’s translation hypothesis for diffusion in the mixed layer. Quart. J. Roy. Meteor. Soc., 102, 817822, https://doi.org/10.1002/qj.49710243411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., S. Wu, and B. Liu, 2017: Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness. Opt. Express, 25, 515525, https://doi.org/10.1364/OE.25.00A515.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 552 196 18
PDF Downloads 520 150 21