Local-Scale Urban Energy Balance Observation under Various Sky Conditions in a Humid Subtropical Region

Yurong Shi State Key Laboratory of Subtropical Building Science, Department of Architecture, South China University of Technology, Wushan, Guangzhou, China

Search for other papers by Yurong Shi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8417-255X
,
Yufeng Zhang State Key Laboratory of Subtropical Building Science, Department of Architecture, South China University of Technology, Wushan, Guangzhou, China

Search for other papers by Yufeng Zhang in
Current site
Google Scholar
PubMed
Close
, and
Riyi Li State Key Laboratory of Subtropical Building Science, Department of Architecture, South China University of Technology, Wushan, Guangzhou, China

Search for other papers by Riyi Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study presents local-scale urban energy balance observations under various sky conditions in a humid subtropical region. The study site is a typical urban residential area in Guangzhou in which building density is 38%, vegetation coverage is 36%, and mean building height is 21 m. The observation was conducted at a 110-m-high tower using the eddy covariance technique from September to November 2016. The median diurnal pattern and daily maxima were achieved for all radiation components and turbulent fluxes. The Bowen ratio (β) results indicated a predominant role for sensible heat flux (QH) in the daytime and latent heat flux (QE) at night. The sky conditions played a significant part in the urban surface energy exchanges, showing that the median daily maxima of net radiation (Q*), QH, storage heat flux (ΔQS), surface albedo, and β all present a consistent order from large to small for clear, cloudy, and rainy days and a different order of rainy, clear, and cloudy days for QE. The mean daytime QH/Q*, QE/Q*, ΔQS/Q*, and β changed with urban density, while QE/Q* and β also varied with vegetation fraction. Furthermore, the adaptability of net all-wave radiation parameterization (NARP), objective hysteresis model (OHM), and local-scale urban meteorological parameterization scheme (LUMPS) were validated, given the index of agreements of 0.998 and 0.951 for Q* and ΔQS and the reasonable RMSEs for QH and QE. The present study helps to verify and improve the parameterizations of energy exchange over an urban surface in the humid subtropical region.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yufeng Zhang, zhangyuf@scut.edu.cn

Abstract

The present study presents local-scale urban energy balance observations under various sky conditions in a humid subtropical region. The study site is a typical urban residential area in Guangzhou in which building density is 38%, vegetation coverage is 36%, and mean building height is 21 m. The observation was conducted at a 110-m-high tower using the eddy covariance technique from September to November 2016. The median diurnal pattern and daily maxima were achieved for all radiation components and turbulent fluxes. The Bowen ratio (β) results indicated a predominant role for sensible heat flux (QH) in the daytime and latent heat flux (QE) at night. The sky conditions played a significant part in the urban surface energy exchanges, showing that the median daily maxima of net radiation (Q*), QH, storage heat flux (ΔQS), surface albedo, and β all present a consistent order from large to small for clear, cloudy, and rainy days and a different order of rainy, clear, and cloudy days for QE. The mean daytime QH/Q*, QE/Q*, ΔQS/Q*, and β changed with urban density, while QE/Q* and β also varied with vegetation fraction. Furthermore, the adaptability of net all-wave radiation parameterization (NARP), objective hysteresis model (OHM), and local-scale urban meteorological parameterization scheme (LUMPS) were validated, given the index of agreements of 0.998 and 0.951 for Q* and ΔQS and the reasonable RMSEs for QH and QE. The present study helps to verify and improve the parameterizations of energy exchange over an urban surface in the humid subtropical region.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yufeng Zhang, zhangyuf@scut.edu.cn
Save
  • Aida, M., 1982: Urban albedo as a function of the urban structure—A model experiment. Bound.-Layer Meteor., 23, 405413, https://doi.org/10.1007/BF00116269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, L., F. Lindberg, and C. S. B. Grimmond, 2011: Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol., 31, 19902005, https://doi.org/10.1002/joc.2210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ando, T., and M. Ueyama, 2017: Surface energy exchange in a dense urban built-up area based on two-year eddy covariance measurements in Sakai, Japan. Urban Climate, 19, 155169, https://doi.org/10.1016/j.uclim.2017.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., and Coauthors, 2016a: Heat, water and carbon exchanges in the tall megacity of Shanghai: Challenges and results. Int. J. Climatol., 36, 46084624, https://doi.org/10.1002/joc.4657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., C. S. B. Grimmond, D. Liu, Z. Han, P. Hu, Y. Wang, X. Zhen, and J. Tan, 2016b: Radiation fluxes in a business district of Shanghai, China. J. Appl. Meteor. Climatol., 55, 24512468, https://doi.org/10.1175/JAMC-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., J. Tan, D. Liu, Y. Wang, and P. Hu, 2017: Evaluation of a surface urban energy balance model in Shanghai (in Chinese). Meteor. Mon., 43, 973986.

    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, https://doi.org/10.1002/joc.859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asaeda, T., and V. T. Ca, 1993: The subsurface transport of heat and moisture and its effect on the environment: A numerical model. Bound.-Layer Meteor., 65, 159179, https://doi.org/10.1007/BF00708822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchvarova, E., and S. E. Gryning, 1991: Applied model for the growth of the daytime mixed layer. Bound.-Layer Meteor., 56, 261274, https://doi.org/10.1007/BF00120423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bottema, M., 1995: Parameterisation of aerodynamic roughness parameters in relation to air pollutant removal efficiency of streets. Air Pollut. Eng. Manage., 6, 235242.

    • Search Google Scholar
    • Export Citation
  • Bottema, M., 1997: Urban roughness modelling in relation to pollutant dispersion. Atmos. Environ., 31, 30593075, https://doi.org/10.1016/S1352-2310(97)00117-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., and J. M. Norman, 1998: An Introduction to Environmental Biophysics. 2nd ed. Springer, 286 pp.

    • Crossref
    • Export Citation
  • Chow, W. T. L., T. J. Volo, E. R. Vivoni, G. D. Jenerette, and B. L. Ruddell, 2014: Seasonal dynamics of a suburban energy balance in Phoenix, Arizona. Int. J. Climatol., 34, 38633880, https://doi.org/10.1002/joc.3947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christen, A., and R. Vogt, 2004: Energy and radiation balance of a central European city. Int. J. Climatol., 24, 13951421, https://doi.org/10.1002/joc.1074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doll, D., J. K. S. Ching, and J. Kaneshiro, 1985: Parameterization of subsurface heating for soil and concrete using net radiation data. Bound.-Layer Meteor., 32, 351372, https://doi.org/10.1007/BF00122000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dou, J., S. Grimmond, Z. Cheng, S. Miao, D. Feng, and M. Liao, 2019: Summertime surface energy balance fluxes at two Beijing sites. Int. J. Climatol., 39, 27932810, https://doi.org/10.1002/joc.5989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffie, J. A., and W. A. Beckman, 2013: Solar Engineering of Thermal Processes. Wiley, 910 pp.

    • Crossref
    • Export Citation
  • Flerchinger, G. N., W. Xaio, D. Marks, T. J. Sauer, and Q. Yu, 2009: Comparison of algorithms for incoming atmospheric long-wave radiation. Water Resour. Res., 45, W03423, https://doi.org/10.1029/2008WR007394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foken, T., M. Göockede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger, 2004: Post-field data quality control. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, X. Lee, W. Massman, and B. Law, Eds., Kluwer Academic Publishers, 181–208.

    • Crossref
    • Export Citation
  • Goldbach, A., and W. Kuttler, 2013: Quantification of turbulent heat fluxes for adaptation strategies within urban planning. Int. J. Climatol., 33, 143159, https://doi.org/10.1002/joc.3437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999a: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteor., 38, 12621292, https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999b: Heat storage in urban areas: Local-scale observations and evaluation of a simple model. J. Appl. Meteor., 38, 922940, https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 2002: Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteor., 41, 792810, https://doi.org/10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., H. A. Cleugh, and T. R. Oke, 1991: An objective urban heat storage model and its comparison with other schemes. Atmos. Environ., 25B, 311326, https://doi.org/10.1016/0957-1272(91)90003-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2010: The International Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 12681292, https://doi.org/10.1175/2010JAMC2354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2011: Initial results from phase 2 of the international urban energy balance model comparison. Int. J. Climatol., 31, 244272, https://doi.org/10.1002/joc.2227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Järvi, L., C. S. B. Grimmond, and A. Christen, 2011: The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver. J. Hydrol., 411, 219237, https://doi.org/10.1016/j.jhydrol.2011.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J., and J. Finnigan, 1994: Atmospheric Boundary Layer Flows—Their Structure and Measurement. Oxford University Press, 289 pp.

    • Crossref
    • Export Citation
  • Kawai, T., and M. Kanda, 2010: Urban energy balance obtained from the Comprehensive Outdoor Scale Model Experiment. Part I: Basic features of the surface energy balance. J. Appl. Meteor. Climatol., 49, 13411359, https://doi.org/10.1175/2010JAMC1992.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kljun, N., M. W. Rotach, and H. P. Schmid, 2002: A three-dimensional backward Lagrangian footprint model for a wide range of boundary-layer stratifications. Bound.-Layer Meteor., 103, 205226, https://doi.org/10.1023/A:1014556300021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid, 2015: The simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev., 8, 36953713, https://doi.org/10.5194/gmd-8-3695-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kormann, R., and F. X. Meixner, 2001: An analytical footprint model for non-neutral stratification. Bound.-Layer Meteor., 99, 207224, https://doi.org/10.1023/A:1018991015119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotthaus, S., and C. S. B. Grimmond, 2012: Identification of micro-scale anthropogenic CO2, heat and moisture sources—Processing eddy covariance fluxes for a dense urban environment. Atmos. Environ., 57, 301316, https://doi.org/10.1016/j.atmosenv.2012.04.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotthaus, S., and C. S. B. Grimmond, 2014a: Energy exchange in a dense urban environment—Part I: Temporal variability of long-term observations in central London. Urban Climate, 10, 261280, https://doi.org/10.1016/j.uclim.2013.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotthaus, S., and C. S. B. Grimmond, 2014b: Energy exchange in a dense urban environment—Part II: Impact of spatial heterogeneity of the surface. Urban Climate, 10, 281307, https://doi.org/10.1016/j.uclim.2013.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., W. Massman, and B. Law, Eds., 2006: Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Kluwer Academic Publishers, 250 pp.

    • Crossref
    • Export Citation
  • Liu, H., G. Peters, and T. Foken, 2001: New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Bound.-Layer Meteor., 100, 459468, https://doi.org/10.1023/A:1019207031397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H. Z., G. Tu, and W. J. Dong, 2008: Three-year changes of surface albedo of degraded grassland and cropland surfaces in a semiarid area. Chin. Sci. Bull., 53, 12461254, https://doi.org/10.1007/s11434-008-0171-2.

    • Search Google Scholar
    • Export Citation
  • Liu, H. Z., J. W. Feng, L. Järvi, and T. Vesala, 2012: Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing. Atmos. Chem. Phys., 12, 78817892, https://doi.org/10.5194/acp-12-7881-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., C. Grimmond, B. D. Offerle, D. T. Young, T. E. L. Smith, L. Järvi, and F. Lindberg, 2011: Local-Scale Urban Meteorological Parameterization Scheme (LUMPS): Longwave radiation parameterization and seasonality-related developments. J. Appl. Meteor. Climatol., 50, 185202, https://doi.org/10.1175/2010JAMC2474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucht, W., C. B. Schaaf, and A. H. Strahler, 2000: An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens., 38, 977998, https://doi.org/10.1109/36.841980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macdonald, R. W., R. F. Griffiths, and D. J. Hall, 1998: An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ., 32, 18571864, https://doi.org/10.1016/S1352-2310(97)00403-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304, https://doi.org/10.1023/A:1016099921195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massman, W. J., 2000: A simple method for estimating frequency response corrections for eddy covariance systems. Agric. For. Meteor., 104, 185198, https://doi.org/10.1016/S0168-1923(00)00164-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S. G., J. X. Dou, C. Fei, L. Ju, and A. G. Li, 2012: Analysis of observations on the urban surface energy balance in Beijing. Sci. China Earth Sci., 55, 18811890, https://doi.org/10.1007/s11430-012-4411-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moriwaki, R., and M. Kanda, 2004: Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteor., 43, 17001710, https://doi.org/10.1175/JAM2153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemitz, E., K. J. Hargreaves, A. G. Mcdonald, J. R. Dorsey, and D. Fowler, 2002: Micrometeorological measurements of the urban heat budget and CO2 emissions on a city scale. Environ. Sci. Technol., 36, 31393146, https://doi.org/10.1021/es010277e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, T., T. R. Oke, C. S. B. Grimmond, and M. Roth, 2007: The suburban energy balance in Miami, Florida. Geogr. Ann., 89A, 331347, https://doi.org/10.1111/j.1468-0459.2007.00329.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1981: The steady-state height and resistance laws of the nocturnal boundary layer: Theory compared with Cabauw observations. Bound.-Layer Meteor., 20, 317, https://doi.org/10.1007/BF00119920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, and T. R. Oke, 2003: Parameterization of net all-wave radiation for urban areas. J. Appl. Meteor., 42, 11571173, https://doi.org/10.1175/1520-0450(2003)042<1157:PONARF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Routledge, 435 pp.

  • Oke, T. R., 2006: Initial guidance to obtain representative meteorological observations at urban sites. Instruments and Observing Methods Rep. 81, WMO/TD 1250, 51 pp., http://library.wmo.int/pmb_ged/wmo-td_1250.pdf.

  • Oke, T. R., R. A. Spronken-Smith, E. Jáuregui, and C. S. B. Grimmond, 1999: The energy balance of central Mexico City during the dry season. Atmos. Environ., 33, 39193930, https://doi.org/10.1016/S1352-2310(99)00134-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 519 pp.

    • Crossref
    • Export Citation
  • Pape, R., and J. Löffler, 2004: Modelling spatio-temporal near-surface temperature variation in high mountain landscapes. Ecol. Modell., 178, 483501, https://doi.org/10.1016/j.ecolmodel.2004.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 1994: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound.-Layer Meteor., 71, 211216, https://doi.org/10.1007/BF00709229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., 2007: Review of urban climate research in (sub)tropical regions. Int. J. Climatol., 27, 18591873, https://doi.org/10.1002/joc.1591.

  • Roth, M., C. Jansson, and E. Velasco, 2017: Multi-year energy balance and carbon dioxide fluxes over a residential neighbourhood in a tropical city. Int. J. Climatol., 37, https://doi.org/10.1002/joc.4873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., 1994: Source areas for scalars and scalar fluxes. Bound.-Layer Meteor., 67, 293318, https://doi.org/10.1007/BF00713146.

  • Schmid, H. P., 1997: Experimental design for flux measurements: matching scales of observations and fluxes. Agric. For. Meteor., 87, 179200, https://doi.org/10.1016/S0168-1923(97)00011-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., and T. R. Oke, 1990: A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. Quart. J. Roy. Meteor. Soc., 116, 965988, https://doi.org/10.1002/qj.49711649409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., H. A. Cleugh, C. S. B. Grimmond, and T. R. Oke, 1991: Spatial variability of energy fluxes in suburban terrain. Bound.-Layer Meteor., 54, 249276, https://doi.org/10.1007/BF00183956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schotanus, P., F. T. M. Nieuwstadt, and H. A. R. De Bruin, 1983: Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound.-Layer Meteor., 26, 8193, https://doi.org/10.1007/BF00164332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, https://doi.org/10.1175/BAMS-D-11-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stunder, M., and S. Sethuraman, 1986: A statistical evaluation and comparison of coastal point source Dispersion Models. Atmos. Environ., 20, 301315, https://doi.org/10.1016/0004-6981(86)90032-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tejeda-Martínez, A., and E. Jáuregui-Ostos, 2005: Surface energy balance measurements in the México City region: A review. Atmósfera, 18, 123.

    • Search Google Scholar
    • Export Citation
  • Velasco, E., S. Pressley, R. Grivicke, E. Allwine, L. T. Molina, and B. Lamb, 2011: Energy balance in urban Mexico City: Observation and parameterization during the MILAGRO/MCMA-2006 field campaign. Theor. Appl. Climatol., 103, 501517, https://doi.org/10.1007/s00704-010-0314-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, H. C., S. Kotthaus, L. Järvi, and C. S. B. Grimmond, 2016: Surface Urban Energy and Water Balance Scheme (SUEWS): Development and evaluation at two UK sites. Urban Climate, 18, 132, https://doi.org/10.1016/j.uclim.2016.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100, https://doi.org/10.1002/qj.49710644707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1982: Some comments on the evaluation of model performance. Bull. Amer. Meteor. Soc., 63, 13091369, https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2008: Guide to Meteorological Instruments and Methods of Observation. 7th edition. WMO, 681 pp.

  • Zhang, B., 1934: The distribution of four seasons in China (in Chinese). Acta Geogr. Sin., 1, 2974.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 395 137 4
PDF Downloads 441 113 3