Estimation of Melting-Layer Cooling Rate from Dual-Polarization Radar: Spectral Bin Model Simulations

Jacob T. Carlin Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jacob T. Carlin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7841-3217
and
Alexander V. Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Diabatic cooling from hydrometeor phase changes in the stratiform melting layer is of great interest to both operational forecasters and modelers for its societal and dynamical consequences. Attempts to estimate the melting-layer cooling rate typically rely on either the budgeting of hydrometeor content estimated from reflectivity Z or model-generated lookup tables scaled by the magnitude of Z in the bright band. Recent advances have been made in developing methods to observe the unique polarimetric characteristics of melting snow and the additional microphysical information they may contain. However, to date no work has looked at the thermodynamic information available from the polarimetric radar brightband signature. In this study, a one-dimensional spectral bin model of melting snow and a coupled polarimetric operator are used to study the relation between the polarimetric radar bright band and the melting-layer cooling rate. Simulations using a fixed particle size distribution (PSD) and variable environmental conditions show that the height and thickness of the bright band and the maximum brightband Z and specific differential phase shift KDP are all sensitive to the ambient environment, while the differential reflectivity ZDR is relatively insensitive. Additional simulations of 2700 PSDs based on in situ observations above the melting layer indicate that the maximum Z, ΔZ, and ZDR within the melting layer are poorly correlated with the maximum cooling rate while KDP is strongly correlated. Finally, model simulations suggest that, in addition to riming, concurrent changes in aggregation and precipitation intensity and the associated cooling may plausibly cause observed sagging brightband signatures.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob T. Carlin, jacob.carlin@noaa.gov

Abstract

Diabatic cooling from hydrometeor phase changes in the stratiform melting layer is of great interest to both operational forecasters and modelers for its societal and dynamical consequences. Attempts to estimate the melting-layer cooling rate typically rely on either the budgeting of hydrometeor content estimated from reflectivity Z or model-generated lookup tables scaled by the magnitude of Z in the bright band. Recent advances have been made in developing methods to observe the unique polarimetric characteristics of melting snow and the additional microphysical information they may contain. However, to date no work has looked at the thermodynamic information available from the polarimetric radar brightband signature. In this study, a one-dimensional spectral bin model of melting snow and a coupled polarimetric operator are used to study the relation between the polarimetric radar bright band and the melting-layer cooling rate. Simulations using a fixed particle size distribution (PSD) and variable environmental conditions show that the height and thickness of the bright band and the maximum brightband Z and specific differential phase shift KDP are all sensitive to the ambient environment, while the differential reflectivity ZDR is relatively insensitive. Additional simulations of 2700 PSDs based on in situ observations above the melting layer indicate that the maximum Z, ΔZ, and ZDR within the melting layer are poorly correlated with the maximum cooling rate while KDP is strongly correlated. Finally, model simulations suggest that, in addition to riming, concurrent changes in aggregation and precipitation intensity and the associated cooling may plausibly cause observed sagging brightband signatures.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob T. Carlin, jacob.carlin@noaa.gov
Save
  • Anderson, R. S., 1974: Meteorological aspects of radar depolarization at 16.5 GHz. Master’s thesis, Dept. of Meteorology, McGill University, 45 pp.

  • Atlas, D., R. Tatehira, R. C. Srivastava, W. Marker, and R. E. Carbone, 1969: Precipitation-induced mesoscale wind perturbations in the melting layer. Quart. J. Roy. Meteor. Soc., 95, 544560, https://doi.org/10.1002/qj.49709540508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P. M., and A. C. Bemis, 1950: A quantitative study of the “bright band” in radar precipitation echoes. J. Meteor., 7, 145151, https://doi.org/10.1175/1520-0469(1950)007<0145:AQSOTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, https://doi.org/10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., C. D. Kummerow, D.-B. Shin, and C. Williams, 2003: Constraining microwave brightness temperatures by radar brightband observations. J. Atmos. Oceanic Technol., 20, 856871, https://doi.org/10.1175/1520-0426(2003)020<0856:CMBTBR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, and J. Verlinde, 2010: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: A new approach. IEEE Geosci. Remote Sens. Lett., 7, 572576, https://doi.org/10.1109/LGRS.2010.2041633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., G. A. Isaac, and D. Hudak, 2006: Ice water content and precipitation rate as a function of equivalent radar reflectivity and temperature based on in situ observations. J. Geophys. Res., 111, D11202, https://doi.org/10.1029/2005JD006499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and F. Sanders, 1991: An early-season coastal storm: Conceptual success and model failure. Mon. Wea. Rev., 119, 28312851, https://doi.org/10.1175/1520-0493(1991)119<2831:AESCSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2005: Corrigendum. J. Appl. Meteor., 44, 186, https://doi.org/10.1175/1520-0450(2005)44<186:C>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. A. Seliga, M. P. M. Hall, S. M. Cherry, J. W. F. Goddard, and G. R. Kennedy, 1981: Dual polarization radar: Techniques and applications. Recent Progress in Radar Meteorology, Vol. 13, Atmospheric Technology, NCAR, 33–45.

  • Browne, I. C., and N. P. Robinson, 1952: Cross-polarization of the radar melting-band. Nature, 170, 10781079, https://doi.org/10.1038/1701078b0.

  • Bukovčić, P., A. V. Ryzhkov, D. Zrnić, and G. Zhang, 2018: Polarimetric radar relations for quantification of snow based on disdrometer data. J. Appl. Meteor. Climatol., 57, 103120, https://doi.org/10.1175/JAMC-D-17-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. D. Coons, 1947: The ‘bright line’ in radar cloud echoes and its probable explanation. J. Meteor., 4, 7881, https://doi.org/10.1175/1520-0469(1947)004<0078:TLIRCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caplan, P. M., 1966: On the evaporation of raindrops in the presence of vertical gradients of temperature and relative humidity. J. Atmos. Sci., 23, 614617, https://doi.org/10.1175/1520-0469(1966)023<0614:OTEORI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlin, J. T., A. V. Ryzhkov, J. C. Snyder, and A. Khain, 2016: Hydrometeor mixing ratio retrievals for storm-scale radar data assimilation: Utility of current relations and potential benefits of polarimetry. Mon. Wea. Rev., 144, 29813001, https://doi.org/10.1175/MWR-D-15-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, R. M., 1947: A different explanation of the “bright line.” J. Meteor., 4, 163, https://doi.org/10.1175/1520-0469(1947)004<0163:ADEOTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Amico, M., A. Holt, and C. Capsoni, 1998: An anisotropic model of the melting layer. Radio Sci., 33, 535552, https://doi.org/10.1029/97RS03049.

  • Erlingis, J. M., J. J. Gourley, P.-E. Kirstetter, E. N. Anagnostou, J. Kalogiros, M. Anagnostou, and W. Petersen, 2018: Evaluation of operational and experimental precipitation algorithms and microphysical insights during IPHEx. J. Hydrometeor., 19, 113125, https://doi.org/10.1175/JHM-D-17-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and W. Szyrmer, 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56, 35933600, https://doi.org/10.1175/1520-0469(1999)056<3593:MOTMLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1940: The formation of the 0°C-isothermal layer and fractocumulus under nimbostratus. Meteor. Z., 76, 4954.

  • Foote, G. B., and P. S. du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249253, https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., 2007: Investigation of polarimetric measurements of rainfall at close and distant ranges. Ph.D. dissertation, University of Oklahoma, 247 pp.

  • Giangrande, S. E., J. M. Krause, and A. V. Ryzhkov, 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol., 47, 13541364, https://doi.org/10.1175/2007JAMC1634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., V. Chandrasekar, V. N. Bringi, and G. Scarchilli, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 23732384, https://doi.org/10.1175/1520-0469(2002)059<2373:EORSDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. R., I. D. Cluckie, and R. J. Griffith, 2001: Aspects of melting and the radar bright band. Meteor. Appl., 8, 371379, https://doi.org/10.1017/S1350482701003139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E., T. Schuur, and A. Ryzhkov, 2018: A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol., 57, 3150, https://doi.org/10.1175/JAMC-D-17-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grim, J. A., G. M. McFarquhar, R. M. Rauber, A. M. Smith, and B. F. Jewett, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part II: Column model simulations. Mon. Wea. Rev., 137, 11861205, https://doi.org/10.1175/2008MWR2505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., and H. R. Pruppacher, 1976: The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 19952006, https://doi.org/10.1175/1520-0469(1976)033<1995:TSOIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardaker, P. J., A. R. Holt, and C. G. Collier, 1995: A melting-layer model and its use in correcting for the bright band in single-polarization radar echoes. Quart. J. Roy. Meteor. Soc., 121, 495525, https://doi.org/10.1002/qj.49712152303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heffernan, E., and J. Marwitz, 1996: The Front Range blizzard of 1990. Part II: Melting effects in a convective band. Mon. Wea. Rev., 124, 24692482, https://doi.org/10.1175/1520-0493(1996)124<2469:TFRBOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendry, A., Y. M. M. Antar, and G. C. McCormick, 1987: On the relationship between the degree of preferred orientation in precipitation and dual-polarization radar echo characteristics. Radio Sci., 22, 3750, https://doi.org/10.1029/RS022i001p00037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitation clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, https://doi.org/10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, https://doi.org/10.1175/JAS-D-12-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, M. R. Poellot, and N. Wood, 2015: Observations of ice microphysics through the melting layer. J. Atmos. Sci., 72, 29022928, https://doi.org/10.1175/JAS-D-14-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., 1979: Doppler radar study of a warm frontal region. J. Atmos. Sci., 36, 20932107, https://doi.org/10.1175/1520-0469(1979)036<2093:DRSOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, https://doi.org/10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., 1987: Some techniques and uses of 2D-C habit classification software for snow particles. J. Atmos. Oceanic Technol., 4, 498511, https://doi.org/10.1175/1520-0426(1987)004<0498:STAUOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1994: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Huang, G., V. Bringi, and M. Thurai, 2008: Orientation angle distributions of drops after an 80-m fall using a 2D video disdrometer. J. Atmos. Oceanic Technol., 25, 17171723, https://doi.org/10.1175/2008JTECHA1075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Humphries, R. G., 1974: Depolarization effects at 3 GHz due to precipitation. Ph.D. dissertation, McGill University, 81 pp.

  • Humphries, R. G., and B. L. Barge, 1979: Polarization and dual-wavelength radar observations of the bright band. IEEE Trans. Geosci. Electron., 17, 190195, https://doi.org/10.1109/TGE.1979.294648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2014: WRF–SBM simulations of melting-layer structure in mixed-phase precipitation events observed during LPVEx. J. Appl. Meteor. Climatol., 53, 27102731, https://doi.org/10.1175/JAMC-D-13-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and I. J. Caylor, 1989: Cross polar observations of the bright band. 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc., 323327.

  • Johnson, B. T., W. S. Olson, and G. Skofronick-Jackson, 2016: The microwave properties of simulated melting precipitation particles: Sensitivity to initial melting. Atmos. Meas. Tech., 9, 921, https://doi.org/10.5194/amt-9-9-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. M. Goss, and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15, 700714, https://doi.org/10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaassen, W., 1988: Radar observations and simulation of the melting layer of precipitation. J. Atmos. Sci., 45, 37413753, https://doi.org/10.1175/1520-0469(1988)045<3741:ROASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., 1979: Observations of the morphology of melting snow. J. Atmos. Sci., 36, 11231130, https://doi.org/10.1175/1520-0469(1979)036<1123:OOTMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds—Their Formation, Optical Properties, and Effects, P. V. Hobbs and E. A. Deepak, Eds., Academic Press, 15–89.

    • Crossref
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, https://doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 12471267, https://doi.org/10.1175/2010JAMC2243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. Mishra, S. E. Giangrande, T. Toto, A. V. Ryzhkov, and A. Bansemer, 2016: Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos., 121, 35843607, https://doi.org/10.1002/2015JD024446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., R. E. Stewart, J. W. Strapp, and G. A. Isaac, 1993: Aircraft observations of the origin and growth of very large snowflakes. Geophys. Res. Lett., 20, 5356, https://doi.org/10.1029/92GL02917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669679, https://doi.org/10.1175/1520-0469(1979)036<0669:MAEOHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., 2014: High-level interface to T-matrix scattering calculations: architecture, capabilities, and limitations. Opt. Express, 22, 16551660, https://doi.org/10.1364/OE.22.001655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and A. von Lerber, 2018: Snowflake melting simulation using smoothed particle hydrodynamics. J. Geophys. Res. Atmos., 123, 18111825, https://doi.org/10.1002/2017JD027909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and R. C. Srivastava, 2001: An analytical solution for raindrop evaporation and its application to radar rainfall measurements. J. Appl. Meteor., 40, 16071616, https://doi.org/10.1175/1520-0450(2001)040<1607:AASFRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2008: Assessment of radar signal attenuation caused by the melting hydrometeor layer. IEEE Trans. Geosci. Remote Sens., 46, 10391047, https://doi.org/10.1109/TGRS.2008.915757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and A. J. Heymsfield, 2017: Empirical relations between size parameters of ice hydrometeor populations and radar reflectivity. J. Appl. Meteor. Climatol., 56, 24792488, https://doi.org/10.1175/JAMC-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Reinking, R. A. Kropfli, and B. W. Bartram, 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol., 13, 8596, https://doi.org/10.1175/1520-0426(1996)013<0085:EOIHTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. J. Heymsfield, and Z. Wang, 2005: Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L13816, https://doi.org/10.1029/2005GL023210.

    • Crossref
    • Export Citation
  • Matsuo, T., and Y. Sasyo, 1981: Melting of snowflakes below freezing level in the atmosphere. J. Meteor. Soc. Japan, 59, 1025, https://doi.org/10.2151/jmsj1965.59.1_10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell Garnett, J. C., 1904: Color in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, 203A, 385420, https://doi.org/10.1098/rsta.1904.0024.

    • Search Google Scholar
    • Export Citation
  • McDonald, J. E., 1963: Use of the electrostatic analogy in studies of ice crystal growth. Z. Angew. Math. Phys., 14, 610620, https://doi.org/10.1007/BF01601268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, and J. A. Grim, 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, https://doi.org/10.1175/MWR3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2009: Corrigendum. Mon. Wea. Rev., 137, 1493–1493, https://doi.org/10.1175/2009MWR2938.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., T.-L. Hsieh, M. Freer, J. Mascio, and B. F. Jewett, 2015: The characterization of ice hydrometeor gamma size distributions as volumes in N 0λμ phase space: Implications for microphysical process modeling. J. Atmos. Sci., 72, 892909, https://doi.org/10.1175/JAS-D-14-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and L. Liao, 1996: Comparisons of cross sections for melting hydrometeors as derived from dielectric mixing formulas and a numerical method. J. Appl. Meteor., 35, 16581670, https://doi.org/10.1175/1520-0450(1996)035<1658:COCSFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, https://doi.org/10.1364/AO.39.001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D., R. Zhang, and R. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29, 153163, https://doi.org/10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., O. Vohl, M. Ahr, and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47, 584591, https://doi.org/10.1175/1520-0469(1990)047<0584:AWTATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, A. J., 2016: Investigating evaporation of melting ice particles within a bin melting layer model. Ph.D. dissertation, University of North Dakota, 115 pp.

  • Olson, W. S., P. Bauer, N. F. Viltard, D. E. Johnson, W.-K. Tao, R. Meneghini, and L. Liao, 2001: A melting-layer model for passive/active microwave remote sensing applications. Part I: Model formulation and comparison with observations. J. Appl. Meteor., 40, 11451163, https://doi.org/10.1175/1520-0450(2001)040<1145:AMLMFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patade, S., T. V. Prabha, D. Axisa, K. Gayatri, and A. Heymsfield, 2015: Particle size distribution properties in mixed-phase monsoon clouds from in situ measurements during CAIPEEX. J. Geophys. Res. Atmos., 120, 10 41810 440, https://doi.org/10.1002/2015JD023375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and M. Jensen, 2012: The NASA-GPM and DOE-ARM Midlatitude Continental Convective Clouds Experiment (MC3E). Int. J. Appl. Earth Obs., 24, 1218.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. Pokrovsky, and A. P. Khain, 2007: The influence of time-dependent melting on the dynamics and precipitation production in maritime and continental storm clouds. J. Atmos. Sci., 64, 338359, https://doi.org/10.1175/JAS3832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planche, C., W. Wobrock, and A. I. Flossmann, 2014: The continuous melting process in a cloud-scale model using a bin microphysics scheme. Quart. J. Roy. Meteor. Soc., 140, 19861996, https://doi.org/10.1002/qj.2265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polder, D., and J. H. van Santen, 1946: The effective permability of mixtures of solids. Physica, 12, 257271, https://doi.org/10.1016/S0031-8914(46)80066-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 954 pp.

  • Rasmussen, R. M., and H. R. Pruppacher, 1982: A wind tunnel study on the melting behavior of atmospheric ice particles. III: Experiment and theory for spherical ice particles of radius <500 μm. J. Atmos. Sci., 39, 152158, https://doi.org/10.1175/1520-0469(1982)039<0152:AWTATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11, 18361844, https://doi.org/10.1364/AO.11.001836.

  • Richardson, L. M., W. D. Zittel, R. R. Lee, V. M. Melnikov, R. L. Ice, and J. G. Cunningham, 2017: Bragg scatter detection by the WSR-88D. Part II: Assessment of Z DRbias estimation. J. Atmos. Oceanic Technol., 34, 479493, https://doi.org/10.1175/JTECH-D-16-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3 ed. Elsevier Press, 290 pp.

  • Russchenberg, H. W. J., and L. P. Ligthart, 1996: Backscattering by and propagation through the melting layer of precipitation: A new polarimetric model. IEEE Trans. Geosci. Remote Sens., 34, 314, https://doi.org/10.1109/36.481885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, J. C. Hubbert, V. N. Bringi, J. Vivekanandan, and E. A. Brandes, 2002: Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. J. Atmos. Oceanic Technol., 19, 340354, https://doi.org/10.1175/1520-0426-19.3.340.

    • Crossref
    • Search Google Scholar
    • Export Citation