A Comparative Verification of Raw and Bias-Corrected ECMWF Seasonal Ensemble Precipitation Reforecasts in Java (Indonesia)

Dian Nur Ratri Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands, and Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta, Indonesia

Search for other papers by Dian Nur Ratri in
Current site
Google Scholar
PubMed
Close
,
Kirien Whan Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by Kirien Whan in
Current site
Google Scholar
PubMed
Close
, and
Maurice Schmeits Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by Maurice Schmeits in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dynamical seasonal forecasts are afflicted with biases, including seasonal ensemble precipitation forecasts from the new ECMWF seasonal forecast system 5 (SEAS5). In this study, biases have been corrected using empirical quantile mapping (EQM) bias correction (BC). We bias correct SEAS5 24-h rainfall accumulations at seven monthly lead times over the period 1981–2010 in Java, Indonesia. For the observations, we have used a new high-resolution (0.25°) land-only gridded rainfall dataset [Southeast Asia observations (SA-OBS)]. A comparative verification of both raw and bias-corrected reforecasts is performed using several verification metrics. In this verification, the daily rainfall data were aggregated to monthly accumulated rainfall. We focus on July, August, and September because these are agriculturally important months; if the rainfall accumulation exceeds 100 mm, farmers may decide to grow a third rice crop. For these months, the first 2-month lead times show improved and mostly positive continuous ranked probability skill scores after BC. According to the Brier skill score (BSS), the BC reforecasts improve upon the raw reforecasts for the lower precipitation thresholds at the 1-month lead time. Reliability diagrams show that the BC reforecasts have good reliability for events exceeding the agriculturally relevant 100-mm threshold. A cost/loss analysis, comparing the potential economic value of the raw and BC reforecasts for this same threshold, shows that the value of the BC reforecasts is larger than that of the raw ones, and that the BC reforecasts have value for a wider range of users at 1- to 7-month lead times.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maurice Schmeits, schmeits@knmi.nl

Abstract

Dynamical seasonal forecasts are afflicted with biases, including seasonal ensemble precipitation forecasts from the new ECMWF seasonal forecast system 5 (SEAS5). In this study, biases have been corrected using empirical quantile mapping (EQM) bias correction (BC). We bias correct SEAS5 24-h rainfall accumulations at seven monthly lead times over the period 1981–2010 in Java, Indonesia. For the observations, we have used a new high-resolution (0.25°) land-only gridded rainfall dataset [Southeast Asia observations (SA-OBS)]. A comparative verification of both raw and bias-corrected reforecasts is performed using several verification metrics. In this verification, the daily rainfall data were aggregated to monthly accumulated rainfall. We focus on July, August, and September because these are agriculturally important months; if the rainfall accumulation exceeds 100 mm, farmers may decide to grow a third rice crop. For these months, the first 2-month lead times show improved and mostly positive continuous ranked probability skill scores after BC. According to the Brier skill score (BSS), the BC reforecasts improve upon the raw reforecasts for the lower precipitation thresholds at the 1-month lead time. Reliability diagrams show that the BC reforecasts have good reliability for events exceeding the agriculturally relevant 100-mm threshold. A cost/loss analysis, comparing the potential economic value of the raw and BC reforecasts for this same threshold, shows that the value of the BC reforecasts is larger than that of the raw ones, and that the BC reforecasts have value for a wider range of users at 1- to 7-month lead times.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maurice Schmeits, schmeits@knmi.nl
Save
  • Aldrian, E., and R. D. Susanto, 2003: Identification of three dominant rainfall region within Indonesia and their relationship to sea surface temperature. Int. J. Climatol., 23, 14351452, https://doi.org/10.1002/joc.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amengual, A., V. Homar, R. Romero, S. Alonso, and C. Ramis, 2012: A statistical adjustment of regional climate model outputs to local scales: Application to Platja de Palma, Spain. J. Climate, 25, 939957, https://doi.org/10.1175/JCLI-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BMKG, 2018: Dry seasonal forecasting 2018 for Indonesia. BMKG, 138 pp., https://cdn.bmkg.go.id/web/Release_Buku_PMK_2018.pdf.

  • Boé, J., L. Terray, F. Habets, and E. Martin, 2007: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol., 27, 16431655, https://doi.org/10.1002/joc.1602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crochemore, L., M. Ramos, and F. Pappenberger, 2016: Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecast. Hydrol. Earth Syst. Sci., 20, 36013618, https://doi.org/10.5194/hess-20-3601-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global Planet. Change, 57, 1626, https://doi.org/10.1016/j.gloplacha.2006.11.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Giuseppe, F., F. Molteni, and A. M. Tompkins, 2013: A rainfall calibration methodology for impacts modelling based on spatial mapping. Quart. J. Roy. Meteor. Soc., 139, https://doi.org/10.1002/qj.2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert, 2012: HESS opinions: “Should we apply bias correction to global and regional climate model data?” Hydrol. Earth Syst. Sci., 16, 33913404, https://doi.org/10.5194/hess-16-3391-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, 2012: Technical note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci., 16, 33833390, https://doi.org/10.5194/hess-16-3383-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16, 17751790, https://doi.org/10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iizumi, T., M. Nishimori, K. Dairaku, S. A. Adachi, and M. Yokozawa, 2011: Evaluation and intercomparison of downscaled daily precipitation indices over Japan in present-day climate: Strengths and weaknesses of dynamical and bias correction-type statistical downscaling methods. J. Geophys. Res., 116, D01111, https://doi.org/10.1029/2010JD014513.

    • Search Google Scholar
    • Export Citation
  • Johnson, S. J., and Coauthors, 2019: SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev., 12, 10871117, https://doi.org/10.5194/gmd-12-1087-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joslyn, S. L., and J. E. LeClerc, 2012: Uncertainty forecasts improve weather-related decisions and attenuate the effects of forecast error. J. Exp. Psychol. Appl., 18, 126140, https://doi.org/10.1037/a0025185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere winter. Climate Dyn., 39, 29572973, https://doi.org/10.1007/s00382-012-1364-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komalasari, K. E., Y. Fajariana, T. A. Nuraini, and R. Anggraeni, 2016: Application of ensemble mean to improve reliability of HyBMKG forecast. J. Meteor. Geofis., 17 (1), 4752, http://puslitbang.bmkg.go.id/jmg/index.php/jmg/article/view/381.

    • Search Google Scholar
    • Export Citation
  • Lafon, T., S. Dadson, G. Buys, and C. Prudhomme, 2013: Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. Int. J. Climatol., 33, 13671381, https://doi.org/10.1002/joc.3518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, https://doi.org/10.1029/2009JD012882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J. Climate, 26, 21372143, https://doi.org/10.1175/JCLI-D-12-00821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marjuki, G. van der Schrier, A. M. G. Klein Tank, E. J. M. van den Besselaar, Nurhayati, and Y. S. Swarinoto, 2014: Observed climatic trends and variability relevant for crop yields in Southeast Asia. Proc. Int. ASEAN SACA&D Conf. and Workshop 2014 (IASCW-2014): Past, Present and Future; A Display of Climate Science and Services in South East Asia, Bogor, Indonesia, BMKG and KNMI, 22–23, http://sacad.database.bmkg.go.id/documents/IASCW_Proceedings.pdf.

  • Mehrotra, R., and A. Sharma, 2016: A multivariate quantile-matching bias correction approach with auto- and cross-dependence across multiple time scales: Implications for downscaling. J. Climate, 29, 35193539, https://doi.org/10.1175/JCLI-D-15-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ministry of Agriculture, 2006: Antisipasi produksi pangan dari ancaman kekeringan. Warta Penelitian dan Pengembangan Pertanian, 28 (24), 46, http://203.190.37.42/publikasi/wr284062.pdf.

    • Search Google Scholar
    • Export Citation
  • Murphy, J., 1999: An evaluation of statistical and dynamical techniques for downscaling local climate. J. Climate, 12, 22562284, https://doi.org/10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naylor, R., D. S. Battisti, D. J. Vimont, W. P. Falcon, and M. B. Burke, 2007: Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proc. Natl. Acad. Sci. USA, 104, 77527757, https://doi.org/10.1073/pnas.0701825104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldeman, L. R., 1980: The agroclimatic classification of rice growing environments in Indonesia. Proc. Symp. on the Agrometeorology of the Rice Crop, Los Baños, Philippines, World Meteorological Organization and the International Rice Research Institute, 47–55.

  • Piani, C., O. Haerter, and E. Corpola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, https://doi.org/10.1007/s00704-009-0134-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos, M. H., S. J. van Andel, and F. Pappenberger, 2013: Do probabilistic forecasts lead to better decisions? Hydrol. Earth Syst. Sci., 17, 22192232, https://doi.org/10.5194/hess-17-2219-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, S., D. Lach, and H. Ingram, 2005: Weather forecasts are for wimps: Why water resource managers do not use climate forecasts. Climatic Change, 69, 197227, https://doi.org/10.1007/s10584-005-3148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501, https://doi.org/10.1029/2004GL020938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2000: Skill and economic value of the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 126, 649668, https://doi.org/10.1002/qj.49712656313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvi, K., S. Kannan, and S. Ghosh, 2011: Statistical downscaling and bias correction for projections of Indian rainfall and temperature in climate change studies. 2011 International Conference on Environmental and Computer Science, Vol. 19, IACSIT Press, 7–11.

  • Satyawardhana, H., and H. Susandi, 2015: Season onset projection in Java based on Conformal Cubic Atmospheric Model (CCAM) downscaling output. J. Sains Dirgantara, 13 (1), 114, http://jurnal.lapan.go.id/index.php/jurnal_sains/article/view/2311/2062.

    • Search Google Scholar
    • Export Citation
  • Schepen, A., Q. J. Wang, and D. E. Robertson, 2014: Seasonal forecast of Australian rainfall through calibration and bridging of coupled GCM outputs. Mon. Wea. Rev., 142, 17581777, https://doi.org/10.1175/MWR-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schepen, A., Q. J. Wang, and Y. Everingham, 2016: Calibration, bridging and merging to improve GCM seasonal temperature forecasts in Australia. Mon. Wea. Rev., 144, 24212441, https://doi.org/10.1175/MWR-D-15-0384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2010: Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies. Geogr. Compass, 4, 834838, https://doi.org/10.1111/j.1749-8198.2010.00357.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trambauer, P., M. Werner, H. C. Winsemius, S. Maskey, E. Dutra, and S. Uhlenbrook, 2015: Hydrological drought forecasting and skill assessment for the Limpopo River basin, southern Africa. Hydrol. Earth Syst. Sci., 19, 16951711, https://doi.org/10.5194/hess-19-1695-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Besselaar, E. J., G. van der Schrier, R. C. Cornes, A. S. Iqbal, and A. M. Klein Tank, 2017: SA-OBS: A daily gridded surface temperature and precipitation dataset for Southeast Asia. J. Climate, 30, 51515165, https://doi.org/10.1175/JCLI-D-16-0575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Eng, P., 2010: Market responses to climate stress: Rice in Java in the 1930s. Aust. Econ. Hist. Rev., 50, 6279, https://doi.org/10.1111/j.1467-8446.2009.00272.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and T. N. Palmer, 2014: On the reliability of seasonal climate forecasts. J. Roy. Soc. Interface, 11, 20131162, https://doi.org/10.1098/rsif.2013.1162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., H. C. Winsemius, E. Dutra, M. Werner, and E. Pappenberger, 2015: Seasonal predictions of agro-meteorological drought indicators for the Limpopo basin. Hydrol. Earth Syst. Sci., 19, 25772586, https://doi.org/10.5194/hess-19-2577-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcke, R., T. Mendlik, and A. Gobiet, 2013: Multi-variable error correction of regional climate models. Climatic Change, 120, 871887, https://doi.org/10.1007/s10584-013-0845-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2001: A skill score based on economic value for probability forecasts. Meteor. Appl., 8, 209219, https://doi.org/10.1017/S1350482701002092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., J. C. Bennett, Q. J. Wang, A. Schepen, A. W. Wood, D. E. Robertson, and M. Ramos, 2017: How suitable is quantile mapping for postprocessing GCM precipitation forecasts? J. Climate, 30, 31853196, https://doi.org/10.1175/JCLI-D-16-0652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1414 448 35
PDF Downloads 1340 320 23