Improving Lake-Breeze Simulation with WRF Nested LES and Lake Model over a Large Shallow Lake

Xiaoyan Zhang Yale– Nanjing University of Information Science and Technology Center on Atmospheric Environment/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Laboratory on Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
School of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiaoyan Zhang in
Current site
Google Scholar
PubMed
Close
,
Jianping Huang Yale– Nanjing University of Information Science and Technology Center on Atmospheric Environment/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Laboratory on Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jianping Huang in
Current site
Google Scholar
PubMed
Close
,
Gang Li Yale– Nanjing University of Information Science and Technology Center on Atmospheric Environment/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Laboratory on Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Gang Li in
Current site
Google Scholar
PubMed
Close
,
Yongwei Wang Yale– Nanjing University of Information Science and Technology Center on Atmospheric Environment/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Laboratory on Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yongwei Wang in
Current site
Google Scholar
PubMed
Close
,
Cheng Liu Yale– Nanjing University of Information Science and Technology Center on Atmospheric Environment/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Laboratory on Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Cheng Liu in
Current site
Google Scholar
PubMed
Close
,
Kaihui Zhao Yale– Nanjing University of Information Science and Technology Center on Atmospheric Environment/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Laboratory on Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Kaihui Zhao in
Current site
Google Scholar
PubMed
Close
,
Xinyu Tao Yale– Nanjing University of Information Science and Technology Center on Atmospheric Environment/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Laboratory on Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xinyu Tao in
Current site
Google Scholar
PubMed
Close
,
Xiao-Ming Hu Center for Analysis and Prediction of Storms and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xiao-Ming Hu in
Current site
Google Scholar
PubMed
Close
, and
Xuhui Lee Yale– Nanjing University of Information Science and Technology Center on Atmospheric Environment/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Laboratory on Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut

Search for other papers by Xuhui Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Weather Research and Forecasting (WRF) Model is used in large-eddy simulation (LES) mode to investigate a lake-breeze case occurring on 12 June 2012 over the Lake Taihu region of China. Observational data from 15 locations, wind profiler radar, and the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to evaluate the WRF nested-LES performance in simulating lake breezes. Results indicate that the simulated temporal and spatial variations of the lake breeze by WRF nested LES are consistent with observations. The simulations with high-resolution grid spacing and the LES scheme have a high correlation coefficient and low mean bias when evaluated against 2-m temperature, 10-m wind, and horizontal and vertical lake-breeze circulations. The atmospheric boundary layer (ABL) remains stable over the lake throughout the lake-breeze event, and the stability becomes even stronger as the lake breeze reaches its mature stage. The improved ABL simulation with LES at a grid spacing of 150 m indicates that the non-LES planetary boundary layer parameterization scheme does not adequately represent subgrid-scale turbulent motions. Running WRF fully coupled to a lake model improves lake-surface temperature and consequently the lake-breeze simulations. Allowing for additional model spinup results in a positive impact on lake-surface temperature prediction but is a heavy computational burden. Refinement of a water-property parameter used in the Community Land Model, version 4.5, within WRF and constraining the lake-surface temperature with observational data would further improve lake-breeze representation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Huang, jianping.huang@noaa.gov

Abstract

The Weather Research and Forecasting (WRF) Model is used in large-eddy simulation (LES) mode to investigate a lake-breeze case occurring on 12 June 2012 over the Lake Taihu region of China. Observational data from 15 locations, wind profiler radar, and the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to evaluate the WRF nested-LES performance in simulating lake breezes. Results indicate that the simulated temporal and spatial variations of the lake breeze by WRF nested LES are consistent with observations. The simulations with high-resolution grid spacing and the LES scheme have a high correlation coefficient and low mean bias when evaluated against 2-m temperature, 10-m wind, and horizontal and vertical lake-breeze circulations. The atmospheric boundary layer (ABL) remains stable over the lake throughout the lake-breeze event, and the stability becomes even stronger as the lake breeze reaches its mature stage. The improved ABL simulation with LES at a grid spacing of 150 m indicates that the non-LES planetary boundary layer parameterization scheme does not adequately represent subgrid-scale turbulent motions. Running WRF fully coupled to a lake model improves lake-surface temperature and consequently the lake-breeze simulations. Allowing for additional model spinup results in a positive impact on lake-surface temperature prediction but is a heavy computational burden. Refinement of a water-property parameter used in the Community Land Model, version 4.5, within WRF and constraining the lake-surface temperature with observational data would further improve lake-breeze representation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Huang, jianping.huang@noaa.gov
Save
  • Andren, A., A. R. Brown, P. J. Mason, J. Graf, U. Schumann, C. H. Moeng, and F. T. Nieuwstadt, 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Quart. J. Roy. Meteor. Soc., 120, 14571484, https://doi.org/10.1002/qj.49712052003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonelli, M., and R. Rotunno, 2007: Large-eddy simulation of the onset of the sea breeze. J. Atmos. Sci., 64, 44454457, https://doi.org/10.1175/2007JAS2261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apel, E. C., and Coauthors, 2010: Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area. Atmos. Chem. Phys., 10, 23532375, https://doi.org/10.5194/acp-10-2353-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colby, F. P., 2004: Simulation of the New England sea breeze: The effect of grid spacing. Wea. Forecasting, 19, 277285, https://doi.org/10.1175/1520-0434(2004)019<0277:SOTNES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comer, N. T., and I. G. McKendry, 1993: Observations and numerical modelling of Lake Ontario breezes. Atmos.–Ocean, 31, 481499, https://doi.org/10.1080/07055900.1993.9649482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 129, https://doi.org/10.1007/s10546-010-9517-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2012: Idealized large-eddy simulations of sea and lake breezes: Sensitivity to lake diameter, heat flux and stability. Bound.-Layer Meteor., 144, 309328, https://doi.org/10.1007/s10546-012-9721-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Coauthors, 2004: Meteorological research needs for improved air quality forecasting: Report of the 11th Prospectus Development Team of the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 85, 563586, https://doi.org/10.1175/BAMS-85-4-563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dandou, A., M. Tombrou, and N. Soulakellis, 2009: The influence of the city of Athens on the evolution of the sea-breeze front. Bound.-Layer Meteor., 131, 3551, https://doi.org/10.1007/s10546-008-9306-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, B., S. Liu, W. Xiao, W. Wang, J. Jin, and X. Lee, 2013: Evaluation of the CLM4 lake model at a large and shallow freshwater lake. J. Hydrometeor., 14, 636649, https://doi.org/10.1175/JHM-D-12-067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 2005: Convective initiation ahead of the sea-breeze front. Mon. Wea. Rev., 133, 264278, https://doi.org/10.1175/MWR-2852.1.

  • Freitas, E. D., C. M. Rozoff, W. R. Cotton, and P. L. S. Dias, 2007: Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil. Bound.-Layer Meteor., 122, 4365, https://doi.org/10.1007/s10546-006-9091-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilliam, R. C., S. Raman, and D. D. S. Niyogi, 2004: Observational and numerical study on the influence of large-scale flow direction and coastline shape on sea-breeze evolution. Bound.-Layer Meteor., 111, 275300, https://doi.org/10.1023/B:BOUN.0000016494.99539.5a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2015: Numerical simulations of Hurricane Katrina (2005) in the turbulent gray zone. J. Adv. Model. Earth Syst., 7, 142161, https://doi.org/10.1002/2014MS000399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gronewold, A. D., V. Fortin, B. Lofgren, A. Clites, C. A. Stow, and F. Quinn, 2013: Coasts, water levels, and climate change: A Great Lakes perspective. Climatic Change, 120, 697711, https://doi.org/10.1007/s10584-013-0840-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, H., J. Jin, Y. Wu, M. B. Ek, and Z. M. Subin, 2015: Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Climatic Change, 129, 471483, https://doi.org/10.1007/s10584-013-0978-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., R. S. Plant, T. H. M. Stein, R. J. Hogan, J. C. Nicol, H. W. Lean, C. Halliwell, and P. A. Clark, 2015: Mixing-length controls on high-resolution simulations of convective storms. Quart. J. Roy. Meteor. Soc., 141, 272284, https://doi.org/10.1002/qj.2356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, N. K., H. E. Fuelberg, S. Tanelli, F. J. Turk, R. P. Lawson, S. Woods, and S. Freeman, 2017: WRF nested large-eddy simulations of deep convection during SEAC4RS. J. Geophys. Res. Atmos., 122, 39533974, https://doi.org/10.1002/2016JD025465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, B., 1985: New formulation of eddy diffusion thermocline models. Appl. Math. Model., 9, 441446, https://doi.org/10.1016/0307-904X(85)90110-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., and P. J. Bartlein, 1990: Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resour. Res., 26, 26032612, https://doi.org/10.1029/WR026i010p02603.

    • Search Google Scholar
    • Export Citation
  • Hu, X. M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, meteor. monogr., No. 46, Amer. Meteor. Soc., 165–170, https://doi.org/10.1007/978-1-935704-13-3_16.

    • Crossref
    • Export Citation
  • Kala, J., T. J. Lyons, D. J. Abbs, and U. S. Nair, 2010: Numerical simulations of the impacts of land-cover change on a southern sea breeze in south-west Western Australia. Bound.-Layer Meteor., 135, 485503, https://doi.org/10.1007/s10546-010-9486-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keen, C. S., and W. A. Lyons, 1978: Lake/land breeze circulations on the western shore of Lake Michigan. J. Appl. Meteor., 17, 18431855, https://doi.org/10.1175/1520-0450(1978)017<1843:LBCOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kehler, S., J. Hanesiak, M. Curry, D. Sills, and N. Taylor, 2016: High Resolution Deterministic Prediction System (HRDPS) simulations of Manitoba lake breezes. Atmos.–Ocean, 54, 93107, https://doi.org/10.1080/07055900.2015.1137857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., S. K. Krueger, C. H. Moeng, P. A. Bogenschutz, and D. A. Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1 (15), https://doi.org/10.3894/JAMES.2009.1.15.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., 1997: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336, 151182, https://doi.org/10.1017/S0022112096004697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., D. A. Kristovich, X. Z. Liang, R. W. Arritt, and K. Labas, 2001: Lake Michigan lake breezes: Climatology, local forcing, and synoptic environment. J. Appl. Meteor., 40, 409424, https://doi.org/10.1175/1520-0450(2001)040<0409:LMLBCL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, S., 1974: A high resolution numerical study of the sea-breeze front. Atmosphere, 12, 97105, https://doi.org/10.1080/00046973.1974.9648375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2010: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, 365375, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lee, X., and Coauthors, 2014: The Taihu eddy flux network: an observational program on energy, water, and greenhouse gas fluxes of a large freshwater lake. Bull. Amer. Meteor. Soc., 95, 15831594, https://doi.org/10.1175/BAMS-D-13-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., 1972: The climatology and prediction of the Chicago lake breeze. J. Appl. Meteor., 11, 12591270, https://doi.org/10.1175/1520-0450(1972)011<1259:TCAPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrer, Y., and M. Segal, 1985: On the effects of islands’ geometry and size on inducing sea breeze circulation. Mon. Wea. Rev., 113, 170174, https://doi.org/10.1175/1520-0493(1985)113<0170:OTEOIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariani, Z., A. Dehghan, P. Joe, and D. Sills, 2018: Observations of lake-breeze events during the Toronto 2015 Pan-American Games. Bound.-Layer Meteor., 166, 113135, https://doi.org/10.1007/s10546-017-0289-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNider, R., and Coauthors, 2018: Examination of the physical atmosphere in the Great Lakes region and its potential impact on air quality—Overwater stability and satellite assimilation. J. Appl. Meteor. Climatol., 57, 27892816, https://doi.org/10.1175/JAMC-D-17-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. D., 1970: A numerical study of the effect of a coastal irregularity on the sea breeze. J. Appl. Meteor., 9, 767777, https://doi.org/10.1175/1520-0450(1970)009<0767:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J. D., J. K. Lundquist, and B. Kosović, 2010: Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the Advanced Research WRF model. Mon. Wea. Rev., 138, 42124228, https://doi.org/10.1175/2010MWR3286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., J. Dudhia, J. Klemp, and P. Sullivan, 2007: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Wea. Rev., 135, 22952311, https://doi.org/10.1175/MWR3406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T., P. J. Mason, C. H. Moeng, and U. Schumann, 1993: Large-eddy simulation of the convective boundary layer: A comparison of four computer codes. Turbulent Shear Flows 8, Springer, 343–367.

  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 173 pp., https://doi.org/10.5065/D6N877R0.

    • Crossref
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., https://doi.org/10.5065/D6FB50WZ.

    • Crossref
    • Export Citation
  • Oleson, K. W., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., https://doi.org/10.5065/D6RR1W7M.

    • Crossref
    • Export Citation
  • Pearce, R. P., 1955: The calculation of a sea-breeze circulation in terms of the differential heating across the coastline. Quart. J. Roy. Meteor. Soc., 81, 351381, https://doi.org/10.1002/qj.49708134906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, P. A., H. E. Fuelberg, and K. K. Droegemeier, 1999: High-resolution modeling of the Cape Canaveral area land–water circulations and associated features. Mon. Wea. Rev., 127, 18081821, https://doi.org/10.1175/1520-0493(1999)127<1808:HRMOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, Y. R., N. Hawley, and C. W. M. Schertzer, 2008: Physical processes and hypoxia in the central basin of Lake Erie. Limnol. Oceanogr., 53, 20072020, https://doi.org/10.4319/lo.2008.53.5.2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., and R. A. Pielke, 1985: The effect of water temperature and synoptic winds on the development of surface flows over narrow, elongated water bodies. J. Geophys. Res., 90, 49074910, https://doi.org/10.1029/JC090iC03p04907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sills, D. M. L., J. R. Brook, I. Levy, P. A. Makar, J. Zhang, and P. A. Taylor, 2011: Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007. Atmos. Chem. Phys., 11, 79557973, https://doi.org/10.5194/acp-11-7955-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, T. H., R. J. Hogan, K. E. Hanley, J. C. Nicol, H. W. Lean, R. S. Plant, P. A. Clark, and C. E. Halliwell, 2014: The three-dimensional morphology of simulated and observed convective storms over southern England. Mon. Wea. Rev., 142, 32643283, https://doi.org/10.1175/MWR-D-13-00372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Talbot, C., P. Augustin, C. Leroy, V. Willart, H. Delbarre, and G. Khomenko, 2007: Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Bound.-Layer Meteor., 125, 133154, https://doi.org/10.1007/s10546-007-9185-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, W. T., T. Holt, and J. Pullen, 2007: Investigation of a sea breeze front in an urban environment. Quart. J. Roy. Meteor. Soc., 133, 579594, https://doi.org/10.1002/qj.52.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2017: Spatiotemporal characteristics of lake breezes over Lake Taihu, China. J. Appl. Meteor. Climatol., 56, 20532065, https://doi.org/10.1175/JAMC-D-16-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, J., M. C. Barth, and D. Noone, 2013: Evaluating a lightning parameterization based on cloud-top height for mesoscale numerical model simulations. Geosci. Model Dev., 6, 429443, https://doi.org/10.5194/gmd-6-429-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. L. Chen, T. A. Schroeder, and K. Kodama, 2005: Numerical simulations of sea-breeze circulations over northwest Hawaii. Wea. Forecasting, 20, 827846, https://doi.org/10.1175/WAF859.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., B. A. Albrecht, V. P. Ghate, and Z. Zhu, 2010: Multiple-scale simulations of stratocumulus clouds. J. Geophys. Res., 115, D23201, https://doi.org/10.1029/2010JD014400.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5866 1760 82
PDF Downloads 1194 173 14