The Fall Speed Variability of Similarly Sized Ice Particle Aggregates

Carl G. Schmitt National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Carl G. Schmitt in
Current site
Google Scholar
PubMed
Close
,
Kara Sulia Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Kara Sulia in
Current site
Google Scholar
PubMed
Close
,
Zachary J. Lebo University of Wyoming, Laramie, Wyoming

Search for other papers by Zachary J. Lebo in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Vanessa Przybyo Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Vanessa Przybyo in
Current site
Google Scholar
PubMed
Close
, and
Paul Connolly School for Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Paul Connolly in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The terminal velocity (V t ) of ice hydrometeors is of high importance to atmospheric modeling. V t is governed by the physical characteristics of a hydrometeor, including mass and projected area, as well as environmental conditions. When liquid hydrometeors coalesce to form larger hydrometeors, the resulting hydrometeor can readily be characterized by its spherical or near-spherical shape. For ice hydrometeors, it is more complicated because of the variability of ice shapes possible in the atmosphere as well as the inherent randomness in the aggregation process, which leads to highly variable characteristics. The abundance of atmospheric processes affecting ice particle dimensional characteristics creates potential for highly variable V t for ice particles that are predicted or measured to be of the “same size.” In this article we explore the variability of ice hydrometeor V t both theoretically and through the use of experimental observations. Theoretically, the variability in V t is investigated by analyzing the microphysical characteristics of randomly aggregated hexagonal shapes. The modeled dimensional characteristics are then compared to aircraft probe measurements to constrain the variability in atmospheric ice hydrometeor V t . Results show that the spread in V t can be represented with Gaussian distributions relative to a mean. Variability expressed as the full width at half maximum of the normalized Gaussian probability distribution function is around 20%, with somewhat higher values associated with larger particle sizes and warmer temperatures. Field campaigns where mostly convective clouds were sampled displayed low variability, while Arctic and midlatitude winter campaigns showed broader V t spectra.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carl G. Schmitt, schmittc@ucar.edu

Abstract

The terminal velocity (V t ) of ice hydrometeors is of high importance to atmospheric modeling. V t is governed by the physical characteristics of a hydrometeor, including mass and projected area, as well as environmental conditions. When liquid hydrometeors coalesce to form larger hydrometeors, the resulting hydrometeor can readily be characterized by its spherical or near-spherical shape. For ice hydrometeors, it is more complicated because of the variability of ice shapes possible in the atmosphere as well as the inherent randomness in the aggregation process, which leads to highly variable characteristics. The abundance of atmospheric processes affecting ice particle dimensional characteristics creates potential for highly variable V t for ice particles that are predicted or measured to be of the “same size.” In this article we explore the variability of ice hydrometeor V t both theoretically and through the use of experimental observations. Theoretically, the variability in V t is investigated by analyzing the microphysical characteristics of randomly aggregated hexagonal shapes. The modeled dimensional characteristics are then compared to aircraft probe measurements to constrain the variability in atmospheric ice hydrometeor V t . Results show that the spread in V t can be represented with Gaussian distributions relative to a mean. Variability expressed as the full width at half maximum of the normalized Gaussian probability distribution function is around 20%, with somewhat higher values associated with larger particle sizes and warmer temperatures. Field campaigns where mostly convective clouds were sampled displayed low variability, while Arctic and midlatitude winter campaigns showed broader V t spectra.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carl G. Schmitt, schmittc@ucar.edu
Save
  • Abdelmonem, A., M. Schnaiter, P. Amsler, E. Hesse, J. Meyer, and T. Leisner, 2011: First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe. Atmos. Meas. Tech., 4, 21252142, https://doi.org/10.5194/amt-4-2125-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content of cirrus using an evaporative technique. J. Atmos. Oceanic Technol., 12, 410414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, H.-R., J. V. Iribarne, and W. G. Richards, 1981: On the orientation of ice crystals in a cumulonimbus cloud. J. Atmos. Sci., 38, 11111114, https://doi.org/10.1175/1520-0469(1981)038<1111:OTOOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. J. Sulia, and H. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part II: Theoretical development. J. Atmos. Sci., 70, 349364, https://doi.org/10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. J. Sulia, and H. Morrison, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, https://doi.org/10.1175/JAS-D-12-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 2003: Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 60, 936956, https://doi.org/10.1175/1520-0469(2003)060<0936:PFTCSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advancements in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, https://doi.org/10.1175/2010JAS3379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and P. Willis, 2014: Cloud conditions favoring secondary ice particle production in tropical maritime convection. J. Atmos. Sci., 71, 45004526, https://doi.org/10.1175/JAS-D-14-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. Milosovich, M. Kajikawa, C. Twohy, and M. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 329, https://doi.org/10.1175/1520-0469(2002)059<0003:AGAFDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, A. Bansemer, G.-J. Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, 2006: Effective radius of ice cloud particle populations derived from aircraft probes. J. Atmos. Oceanic Technol., 23, 361380, https://doi.org/10.1175/JTECH1857.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., P. R. Field, M. Bailey, D. Rogers, J. Stith, C. Twohy, Z. Wang, and S. Haimov, 2011: Ice in clouds experiment—Layer clouds. Part I: Ice growth rates derived from lenticular wave cloud penetrations. J. Atmos. Sci., 68, 26282654, https://doi.org/10.1175/JAS-D-11-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86° C. J. Atmos. Sci., 70, 41234154, https://doi.org/10.1175/JAS-D-12-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaac, G., and Coauthors, 2005: First results from the Alliance Icing Research Study II. 43rd Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, NV, AIAA 2005-252, https://doi.org/10.2514/6.2005-252.

    • Crossref
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrant, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., D. Starr, and O. B. Toon, 2004: Mission investigates tropical cirrus clouds. Eos, Trans. Amer. Geophys. Union, 85, 4550, https://doi.org/10.1029/2004EO050002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, https://doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, https://doi.org/10.1029/2000JD900789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. A. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, G., and Coauthors, 2015: Observations and comparisons of cloud microphysical properties in spring and summertime Arctic stratocumulus clouds during the ACCACIA campaign. Atmos. Chem. Phys., 15, 37193737, https://doi.org/10.5194/acp-15-3719-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, and R. Jackson, 2013: Small cloud particle shapes in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 12771293, https://doi.org/10.1175/JAMC-D-12-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., and R. C. Srivastava, 1979: A new aspect of snowflake aggregation theory. J. Atmos. Sci., 36, 484493, https://doi.org/10.1175/1520-0469(1979)036<0484:ANAOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Przybylo, V. M., K. J. Sulia, C. G. Schmitt, Z. J. Lebo, and W. C. May, 2019: The Ice Particle and Aggregate Simulator (IPAS). Part I: To extract dimensional properties of ice–ice aggregates for microphysical parameterization. J. Atmos. Sci., 76, 16611676, https://doi.org/10.1175/JAS-D-18-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasyo, Y., and T. Matsuo, 1980: On the statistical investigation of fall velocity of snowflakes. Pap. Meteor. Geophys., 31, 6179, https://doi.org/10.2467/mripapers.31.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasyo, Y., and T. Matsuo, 1985: Effects of variations in falling velocities of snowflakes on their aggregation. J. Meteor. Soc. Japan, 63, 249261, https://doi.org/10.2151/jmsj1965.63.2_249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616, https://doi.org/10.1175/2009JAS3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2014: Observational quantification of the separation of simple and complex atmospheric ice particles. Geophys. Res. Lett., 41, 13011307, https://doi.org/10.1002/2013GL058781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., A. J. Heymsfield, P. Connolly, E. Järvinen, and M. Schnaiter, 2016: A global view of atmospheric ice particle complexity. Geophys. Res. Lett., 43, 11 91311 920, https://doi.org/10.1002/2016GL071267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K., J. Y. Harrington, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part III: Applications and studies within a two-dimensional kinematic model. J. Atmos. Sci., 70, 33023320, https://doi.org/10.1175/JAS-D-12-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., A. J. Schanot, and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14, 197202, https://doi.org/10.1175/1520-0426(1997)014<0197:MOCWCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, G., C. Schiller, A. R. MacKenzie, K. Bower, T. Peter, H. Schlager, N. R. P. Harris, and P. T. May, 2008: SCOUTO3/ACTIVE: High-altitude aircraft measurements around deep tropical convection. Bull. Amer. Meteor. Soc., 89, 647662, https://doi.org/10.1175/BAMS-89-5-647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88, 205221, https://doi.org/10.1175/BAMS-88-2-205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteway, J., and Coauthors, 2004: Anatomy of cirrus clouds: Results from the Emerald airborne campaigns. Geophys. Res. Lett., 31, L24102, https://doi.org/10.1029/2004GL021201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, https://doi.org/10.1175/JTECH-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 458 165 10
PDF Downloads 409 78 2