Development of Near-Cloud Turbulence Diagnostics Based on a Convective Gravity Wave Drag Parameterization

Soo-Hyun Kim Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Soo-Hyun Kim in
Current site
Google Scholar
PubMed
Close
,
Hye-Yeong Chun Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Hye-Yeong Chun in
Current site
Google Scholar
PubMed
Close
,
Robert D. Sharman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Robert D. Sharman in
Current site
Google Scholar
PubMed
Close
, and
Stanley B. Trier National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Stanley B. Trier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We propose near-cloud turbulence (NCT) diagnostics for use in aviation turbulence forecasting, using a convective gravity wave drag (CGWD) parameterization scheme. The NCT diagnostics are obtained based on (i) CGWD and (ii) minimum Richardson number including the effects of convective gravity waves (CGWs). The feasibility of the NCT diagnostics is examined using numerical simulation results of real turbulence cases related to the breaking of CGWs, which occurred over eastern Missouri and southwestern Illinois in the United States on 9–10 March 2006, and near Fukuoka, Japan, on 2 September 2007. On 9–10 March 2006, several instances of moderate-or-greater (MOG)-intensity turbulence were reported above shallow but active convection over the central United States, while on 2 September 2007, severe turbulence was encountered above dissipating convection near Fukuoka, Japan. The high-resolution simulation results for both turbulence events show that CGWs and their breaking provide favorable environments for turbulence generation. For two simulated real cases, nonzero NCT diagnostics are reasonably well matched with observed turbulence encounters. The global distribution of CGWD calculated using global reanalysis data revealed a high potential of MOG turbulence in the tropics and the midlatitudes, which can be clearly distinguished from the traditional clear-air turbulence index where high potentials of MOG turbulence are diagnosed in the midlatitudes associated with the strong vertical wind shears near jet streams. These results imply that the proposed NCT diagnostics are useful for forecasting turbulence related to the breaking of CGWs, especially, in tropical regions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Hye-Yeong Chun, chunhy@yonsei.ac.kr

Abstract

We propose near-cloud turbulence (NCT) diagnostics for use in aviation turbulence forecasting, using a convective gravity wave drag (CGWD) parameterization scheme. The NCT diagnostics are obtained based on (i) CGWD and (ii) minimum Richardson number including the effects of convective gravity waves (CGWs). The feasibility of the NCT diagnostics is examined using numerical simulation results of real turbulence cases related to the breaking of CGWs, which occurred over eastern Missouri and southwestern Illinois in the United States on 9–10 March 2006, and near Fukuoka, Japan, on 2 September 2007. On 9–10 March 2006, several instances of moderate-or-greater (MOG)-intensity turbulence were reported above shallow but active convection over the central United States, while on 2 September 2007, severe turbulence was encountered above dissipating convection near Fukuoka, Japan. The high-resolution simulation results for both turbulence events show that CGWs and their breaking provide favorable environments for turbulence generation. For two simulated real cases, nonzero NCT diagnostics are reasonably well matched with observed turbulence encounters. The global distribution of CGWD calculated using global reanalysis data revealed a high potential of MOG turbulence in the tropics and the midlatitudes, which can be clearly distinguished from the traditional clear-air turbulence index where high potentials of MOG turbulence are diagnosed in the midlatitudes associated with the strong vertical wind shears near jet streams. These results imply that the proposed NCT diagnostics are useful for forecasting turbulence related to the breaking of CGWs, especially, in tropical regions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Hye-Yeong Chun, chunhy@yonsei.ac.kr
Save
  • Andrews, D. C., J. R. Holton, and C. B. Leovy, 1987: Linear wave theory. Middle Atmosphere Dynamics, Academic Press, 150–219.

    • Crossref
    • Export Citation
  • Baek, S., 2017: A revised radiation package of G-packed McICA and two-stream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst., 9, 16281640, https://doi.org/10.1002/2017MS000994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baik, J.-J., and H.-Y. Chun, 1996: Effects of nonlinearity on the atmospheric flow response to low-level heating in a uniform flow. J. Atmos. Sci., 53, 18561869, https://doi.org/10.1175/1520-0469(1996)053<1856:EONOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barber, K., G. L. Mullendore, and M. J. Alexander, 2018: Out-of-cloud convective turbulence: Estimation method and impacts of model resolution. J. Appl. Meteor. Climatol., 57, 121136, https://doi.org/10.1175/JAMC-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedard, A. J., F. Canavero, and F. Einaudi, 1986: Atmospheric gravity waves and aircraft turbulence encounters. J. Atmos. Sci., 43, 28382844, https://doi.org/10.1175/1520-0469(1986)043<2838:AGWAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation-forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2004: A method of specifying the gravity wave spectrum and above convection based on latent heating properties and background wind. J. Atmos. Sci., 61, 324337, https://doi.org/10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caine, S., T. P. Lane, P. T. May, C. Jakob, M. J. Manton, S. T. Siems, and J. Pinto, 2013: Statistical assessment of tropical convection-permitting model simulations using a cell-tracking algorithm. Mon. Wea. Rev., 141, 557581, https://doi.org/10.1175/MWR-D-11-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., and S. Nigam, 2009: Residual diagnosis of diabatic heating from ERA-40 and NCEP reanalyses: Intercomparisons with TRMM. J. Climate, 22, 414428, https://doi.org/10.1175/2008JCLI2417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, H.-J., and H.-Y. Chun, 2011: Momentum flux spectrum of convective gravity waves. Part I: An update of a parameterization using mesoscale simulations. J. Atmos. Sci., 68, 739759, https://doi.org/10.1175/2010JAS3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, H.-J., J.-Y. Han, M.-S. Koo, H.-Y. Chun, Y.-H. Kim, and S.-Y. Hong, 2018: Effects of non-orographic gravity wave drag on seasonal and medium-range predictions in a global forecast model. Asia-Pac. J. Atmos. Sci., 54, 385402, https://doi.org/10.1007/s13143-018-0023-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, No. 3, 85 pp.

  • Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 32993310, https://doi.org/10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., M.-D. Song, J.-W. Kim, and J.-J. Baik, 2001: Effects of gravity wave drag induced by cumulus convection on the atmospheric general circulation. J. Atmos. Sci., 58, 302319, https://doi.org/10.1175/1520-0469(2001)058<0302:EOGWDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., I.-S. Song, J.-J. Baik, and Y.-J. Kim, 2004: Impact of a convectively forced gravity wave drag parameterization in NCAR CCM3. J. Climate, 17, 35303547, https://doi.org/10.1175/1520-0442(2004)017<3530:IOACFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., J.-S. Goh, I.-S. Song, and L. Ricciardulli, 2007: Latitudinal variations of the convective source and condition of inertio-gravity waves in the tropics. J. Atmos. Sci., 64, 16031618, https://doi.org/10.1175/JAS3891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multilayer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, NCAR, 49–50.

  • Ellrod, G. P., and D. I. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150165, https://doi.org/10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Federal Aviation Administration, 2012: Aeronautical information manual. FAA Doc., 762 pp.

  • Federal Aviation Administration, 2017: Safety of flight. Aeronautical information manual. FAA Doc., 435–539.

  • Fedorovich, E., R. Rotunno, and B. Stevens, Eds., 2004: Atmospheric Turbulence and Mesoscale Meteorology: Scientific Research Inspired by Doug Lilly. Cambridge University Press, 280 pp.

    • Crossref
    • Export Citation
  • Gill, P. G., and P. Buchanan, 2014: An ensemble based turbulence forecasting system. Meteor. Appl., 21, 1219, https://doi.org/10.1002/met.1373.

  • Gilman, D. L., F. J. Fuglister, and J. M. Mitchell Jr., 1963: On the power spectrum of “red noise.” J. Atmos. Sci., 20, 182184, https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golding, W. L., 2000: Turbulence and its impact of commercial aviation. J. Aviat./Aerosp. Educ. Res., 11, 8, https://doi.org/10.15394/jaaer.2002.1301.

    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., M. J. Alexander, P. T. May, and L. Hoffmann, 2010: Model study of waves generated by convection with direct validation via satellite. J. Atmos. Sci., 67, 16171631, https://doi.org/10.1175/2009JAS3197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, D. W., and F. H. Proctor, 2002: Convectively induced turbulence encountered during NASA’s fall-2000 flight experiments. Extended Abstracts, 10th Conf. on Aviation, Range, and Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., 10.8, https://ams.confex.com/ams/pdfpapers/40038.pdf.

    • Crossref
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp., http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.

  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, M.-J., H.-Y. Chun, and Y.-H. Kim, 2017: Momentum flux of convective gravity wave derived from an offline gravity wave parameterization. Part I: Spatiotemporal variations at source level. J. Atmos. Sci., 74, 31673189, https://doi.org/10.1175/JAS-D-17-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, M. L., A. W. Huffman, K. M. Lux, J. J. Charney, A. R. Riordan, and Y.-L. Lin, 2005: Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: A 44-case study synoptic observational analyses. Meteor. Atmos. Phys., 88, 129152, https://doi.org/10.1007/s00703-004-0080-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., and H.-Y. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteor. Climatol., 50, 311324, https://doi.org/10.1175/2010JAMC2492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., and H.-Y. Chun, 2012a: A numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteor. Climatol., 51, 11801200, https://doi.org/10.1175/JAMC-D-11-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., and H.-Y. Chun, 2012b: Development of the Korean aviation Turbulence Guidance (KTG) system using the operational Unified Model (UM) of the Korea Meteorological Administration (KMA) and pilot reports (PIREPs) (in Korean with English abstract). J. Korean Soc. Aviat. Aeronaut., 20, 7683, https://doi.org/10.12985/ksaa.2012.20.4.076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., H.-Y. Chun, R. D. Sharman, and T. L. Keller, 2011: Evaluations of upper-level turbulence diagnostics performance using the Graphical Turbulence Guidance (GTG) system and pilot reports (PIREPs) over East Asia. J. Appl. Meteor. Climatol., 50, 19361951, https://doi.org/10.1175/JAMC-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., H.-Y. Chun, R. D. Sharman, and S. B. Trier, 2014: The role of vertical shear on aviation turbulence within cirrus bands of a simulated western Pacific cyclone. Mon. Wea. Rev., 142, 27942813, https://doi.org/10.1175/MWR-D-14-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-H., and H.-Y. Chun, 2016: Aviation turbulence encounters detected from aircraft observations: Spatiotemporal characteristics and application to Korean aviation turbulence guidance. Meteor. Appl., 23, 594604, https://doi.org/10.1002/met.1581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-Y., and H.-Y. Chun, 2010: Stratospheric gravity waves generated by Typhoon Saomai (2006): Numerical modeling in a moving frame following the typhoon. J. Atmos. Sci., 67, 36173636, https://doi.org/10.1175/2010JAS3374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, https://doi.org/10.1175/2011BAMS3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, J. A., D. W. McCann, and P. D. Williams, 2008: Application of the Lighthill–Ford theory of spontaneous imbalance to clear-air turbulence forecasting. J. Atmos. Sci., 65, 32923304, https://doi.org/10.1175/2008JAS2477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and R. D. Sharman, 2008: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. J. Appl. Meteor. Climatol., 47, 27772796, https://doi.org/10.1175/2008JAMC1787.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321, https://doi.org/10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., J. D. Doyle, R. D. Sharman, M. A. Shapiro, and C. D. Watson, 2009: Statistics and dynamics of aircraft encounters of turbulence over Greenland. Mon. Wea. Rev., 137, 26872702, https://doi.org/10.1175/2009MWR2878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499515, https://doi.org/10.1175/BAMS-D-11-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.-B., and H.-Y. Chun, 2014: Development of the seasonal Korean aviation Turbulence Guidance (KTG) system using the regional unified model of the Korea Meteorological Administration (KMA) (in Korean with English abstract). Atmosphere, 24, 235243, https://doi.org/10.14191/Atmos.2014.24.2.235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.-B., and H.-Y. Chun, 2015a: A statistical analysis of aviation turbulence observed in pilot report (PIREP) over East Asia including South Korea (in Korean with English abstract). Atmosphere, 25, 129140, https://doi.org/10.14191/Atmos.2015.25.1.129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.-B., and H.-Y. Chun, 2015b: Development of the Korean Peninsula Korean aviation Turbulence Guidance (KP-KTG) system using the Local Data Assimilation and Prediction System (LDAPS) of the Korea Meteorological Administration (KMA) (in Korean with English abstract). Atmosphere, 25, 367374, https://doi.org/10.14191/Atmos.2015.25.2.367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.-B., and H.-Y. Chun, 2018: A numerical study of aviation turbulence encountered on 13 February 2013 over the Yellow Sea between China and Korea. J. Appl. Meteor. Climatol., 57, 10431060, https://doi.org/10.1175/JAMC-D-17-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lester, P. F., 1994: Turbulence: A New Perspective for Pilots. Jeppesen Sanderson, 212 pp.

  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, https://doi.org/10.3402/tellusa.v14i2.9537.

  • Lilly, D. K., 1966: On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Tech. Rep. 123, 18 pp., https://doi.org/10.5065/D67H1GGQ.

    • Crossref
    • Export Citation
  • Lin, Y.-L., and H.-Y. Chun, 1991: Effects of diabatic cooling in a shear flow with a critical level. J. Atmos. Sci., 48, 24762491, https://doi.org/10.1175/1520-0469(1991)048<2476:EODCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of a snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneguz, E., H. Wells, and D. Turp, 2016: An automated system to quantify aircraft encounters with convectively induced turbulence over Europe and the northeast Atlantic. J. Appl. Meteor. Climatol., 55, 10771089, https://doi.org/10.1175/JAMC-D-15-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45, 35733587, https://doi.org/10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monette, S. A., and J. M. Sieglaff, 2014: Probability of convectively induced turbulence associated with geostationary satellite-inferred cloud-top cooling. J. Appl. Meteor. Climatol., 53, 429436, https://doi.org/10.1175/JAMC-D-13-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 10011039, https://doi.org/10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pantley, K. C., and P. F. Lester, 1990: Observations of severe turbulence near thunderstorm tops. J. Appl. Meteor., 29, 11711179, https://doi.org/10.1175/1520-0450(1990)029<1171:OOSTNT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, J., and R. D. Sharman, 2017: Prediction of energy dissipation rates for aviation turbulence. Part II: Nowcasting convective and nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 339351, https://doi.org/10.1175/JAMC-D-16-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and R. R. Garcia, 2000: The excitation of equatorial waves by deep convection in the NCAR Community Climate Model (CCM3). J. Atmos. Sci., 57, 34613487, https://doi.org/10.1175/1520-0469(2000)057<3461:TEOEWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riddaway, R. W., 1998: Notes and news. Meteor. Appl., 5, 8892, https://doi.org/10.1017/S135048279801055X.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, B., 1996: The quantitative use of PIREPs in developing aviation weather guidance products. Wea. Forecasting, 11, 372384, https://doi.org/10.1175/1520-0434(1996)011<0372:TQUOPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., and T. P. Lane, Eds., 2016: Aviation Turbulence: Processes, Detection, Prediction. Springer, 523 pp., https://doi.org/10.1007/978-3-319-23630-8.

    • Crossref
    • Export Citation
  • Sharman, R. D., and J. Pearson, 2017: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 317337, https://doi.org/10.1175/JAMC-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., and S. B. Trier, 2019: Influences of gravity waves on convectively induced turbulence (CIT): A review. Pure Appl. Geophys., 176, 19231958, https://doi.org/10.1007/s00024-018-1849-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21, 268287, https://doi.org/10.1175/WAF924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., S. B. Trier, T. P. Lane, and J. D. Doyle, 2012: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803, https://doi.org/10.1029/2012GL051996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 14161432, https://doi.org/10.1175/JAMC-D-13-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Y.-L. Lin, 1982: The addition of heat to a stratified airstream with application to the dynamics of orographic rain. Quart. J. Roy. Meteor. Soc., 108, 353378, https://doi.org/10.1002/qj.49710845605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, I.-S., and H.-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62, 107124, https://doi.org/10.1175/JAS-3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephan, C., and M. J. Alexander, 2015: Realistic simulations of atmospheric gravity waves over the continental U.S. using precipitation radar data. J. Adv. Model. Earth Syst., 7, 823835, https://doi.org/10.1002/2014MS000396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, L. N., P. D. Williams, and M. M. Joshi, 2017: Global response of clear-air turbulence to climate change. Geophys. Phys. Lett., 44, 99769984, https://doi.org/10.1002/2017GL074618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and R. D. Sharman, 2009: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convection system. Mon. Wea. Rev., 137, 19721990, https://doi.org/10.1175/2008MWR2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and R. D. Sharman, 2016: Mechanisms influencing cirrus banding and aviation turbulence near a convectively enhanced upper-level jet stream. Mon. Wea. Rev., 144, 30033027, https://doi.org/10.1175/MWR-D-16-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., R. D. Sharman, R. G. Fovell, and R. G. Frehlich, 2010: Numerical simulation of radial cloud bands within the upper-level out-flow of an observed mesoscale convective system. J. Atmos. Sci., 67, 29902999, https://doi.org/10.1175/2010JAS3531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Wea. Rev., 140, 24772496, https://doi.org/10.1175/MWR-D-11-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tvaryanas, A. P., 2003: Epidemiology of turbulence-related injuries in airline cabin crew, 1992–2001. Aviat. Space Environ. Med., 74, 970976.

    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M., 2013: Boeing: Current market outlook 2013–2032. Boeing Commercial Airlines, 37 pp., http://speednews.com/documentaccess/103536_cmo2013.pdf.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Williams, J. K., 2014: Using random forests to diagnose aviation turbulence. Mach. Learn., 95, 5170, https://doi.org/10.1007/s10994-013-5346-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., 2017: Increased light, moderate, and severe clear-air turbulence in response to climate change. Adv. Atmos. Sci., 34, 576586, https://doi.org/10.1007/s00376-017-6268-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, J. K., and R. D. Sharman, 2008: Climatology of upper-level turbulence over the contiguous United States. J. Appl. Meteor. Climatol., 47, 21982214, https://doi.org/10.1175/2008JAMC1799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zovko-Rajak, D., and T. P. Lane, 2014: The generation of near-cloud turbulence in idealized simulations. J. Atmos. Sci., 71, 24302451, https://doi.org/10.1175/JAS-D-13-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 610 271 29
PDF Downloads 763 215 35