Keys to Differentiating between Small- and Large-Drop Icing Conditions in Continental Clouds

Ben C. Bernstein Leading Edge Atmospherics, Longmont, Colorado

Search for other papers by Ben C. Bernstein in
Current site
Google Scholar
PubMed
Close
,
Roy M. Rasmussen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy M. Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Frank McDonough Desert Research Institute, University of Nevada, Reno, Nevada

Search for other papers by Frank McDonough in
Current site
Google Scholar
PubMed
Close
, and
Cory Wolff National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Cory Wolff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using observations from research aircraft flights over the Great Lakes region, synoptic and mesoscale environments that appear to drive a relationship between liquid water content, drop concentration, and drop size are investigated. In particular, conditions that fell within “small drop” and “large drop” regimes are related to cloud and stability profiles, providing insight regarding whether the clouds are tied to the local boundary layer. These findings are supported by analysis of flight data from other parts of North America and used to provide context for several icing incidents and accidents where large-drop icing was noted as a contributing factor. The relationships described for drop size discrimination in continental environments provide clues that can be applied for both human- and model-generated icing forecasts, as well as automated icing algorithms.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ben C. Bernstein, icingweather@gmail.com

Abstract

Using observations from research aircraft flights over the Great Lakes region, synoptic and mesoscale environments that appear to drive a relationship between liquid water content, drop concentration, and drop size are investigated. In particular, conditions that fell within “small drop” and “large drop” regimes are related to cloud and stability profiles, providing insight regarding whether the clouds are tied to the local boundary layer. These findings are supported by analysis of flight data from other parts of North America and used to provide context for several icing incidents and accidents where large-drop icing was noted as a contributing factor. The relationships described for drop size discrimination in continental environments provide clues that can be applied for both human- and model-generated icing forecasts, as well as automated icing algorithms.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ben C. Bernstein, icingweather@gmail.com
Save
  • Accident Investigation Board Norway, 2009: Report on the serious incident over glacier Folgefonna, Norway on 14 September 2005 with ATR 42-320, LN-FAO, operated by Coast Air AS. AIBN Rep. SL 2009/02, 71 pp., https://www.aibn.no/Aviation/Reports/2009-02-eng.

  • Bernstein, B. C., 2000: Regional and local influences on freezing drizzle, freezing rain, and ice pellet events. Wea. Forecasting, 15, 485508, https://doi.org/10.1175/1520-0434(2000)015<0485:RALIOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., 2001: Evaluation of NCAR Icing/SLD forecasts, tools and techniques used during the 1998 NASA SLD flight season. NASA CR–2001-210954, 52 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010097719.pdf.

  • Bernstein, B. C., and R. Flemming, 2007: Certification of the Sikorsky S-92A Helicopter Ice Protection System: Meteorological aspects of tanker tests and natural icing flights. SAE Trans., 116, 664–671.

    • Crossref
    • Export Citation
  • Bernstein, B. C., T. Omeron, M. Politovich, and F. McDonough, 1998: Surface weather features associated with freezing precipitation and severe in-flight aircraft icing. Atmos. Res., 46, 5774, https://doi.org/10.1016/S0169-8095(97)00051-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., F. McDonough, M. K. Politovich, B. G. Brown, T. P. Ratvasky, D. R. Miller, C. A. Wolff, and G. Cunning, 2005: Current Icing Potential (CIP): Algorithm description and comparison with aircraft observations. J. Appl. Meteor., 44, 969986, https://doi.org/10.1175/JAM2246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., W. Campo, L. Algodoal, F. Bottino, L. Lillie, and A. Henriques, 2006a: The Embraer-170 and -190 Natural Icing Flight Campaigns: Keys to success. American Institute of Aeronautics and Astronautics, 2006-264, 21 pp.

    • Crossref
    • Export Citation
  • Bernstein, B. C., F. McDonough, C. A. Wolff, M. K. Politovich, G. Cunning, S. Mueller, and S. Zednik, 2006b: The new CIP icing severity product. 12th Conf. on Aviation, Range and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., P9.5, http://ams.confex.com/ams/pdfpapers/102273.pdf.

  • Bernstein, B. C., C. A. Wolff, and F. McDonough, 2007: An inferred climatology of icing conditions aloft, including supercooled large drops. Part I: Canada and the continental United States. J. Appl. Meteor. Climatol., 46, 18571878, https://doi.org/10.1175/2007JAMC1607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., F. McDonough, and C. A. Wolff, 2011: A regional comparison of icing conditions in boundary layer clouds. Int. Conf. on Aircraft and Engine Icing and Ground Deicing, Chicago, IL, SAE, 2011-38-0021, http://papers.sae.org/2011-38-0021.

    • Crossref
    • Export Citation
  • Biter, C. J., J. E. Dye, D. Huffman, and W. D. King, 1987: The drop-size response of the CSIRO liquid water probe. J. Atmos. Oceanic Technol., 4, 359367, https://doi.org/10.1175/1520-0426(1987)004<0359:TDSROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bocchieri, J. R., 1980: The objective use of upper air soundings to specify precipitation type. Mon. Wea. Rev., 108, 596603, https://doi.org/10.1175/1520-0493(1980)108<0596:TOUOUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., and G. A. Isaac, 2006: Estimating maximum aircraft icing environments using a large data base of in-situ observations. AIAA 44th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, AIAA 2006-0266, https://doi.org/10.2514/6.2006-266.

    • Crossref
    • Export Citation
  • Cober, S. G., and G. A. Isaac, 2012: Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification. J. Appl. Meteor., 51, 265284, https://doi.org/10.1175/JAMC-D-11-022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and J. W. Strapp, 2001: Characterizations of aircraft icing environments that include supercooled large drops. J. Appl. Meteor., 40, 19842002, https://doi.org/10.1175/1520-0450(2001)040<1984:COAIET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., B. C. Bernstein, C. C. Robbins, and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, https://doi.org/10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiVito, S., and J. T. Riley, 2017: An overview of the Federal Aviation Administration (FAA) Terminal Area Icing Weather Information for NextGen (TAIWIN) Project. 18th Conf. on Aviation, Range and Aerospace, Seattle, WA, Amer. Meteor. Soc., https://ams.confex.com/ams/97Annual/webprogram/Paper314380.html.

  • FAA, 1999: Appendix C. Airworthiness Standard: Transport Category Airplanes, Part 25, Aeronautics and Space, Title 14, U.S. Code of Federal Regulations, National Archives and Records Administration, 536–543.

  • FAA, 2015: Airplane and Engine Certification Requirements in Supercooled Large Drop, Mixed Phase and Ice Crystal Icing Conditions; Final Rule. Parts 25 and 33, Aeronautics and Space, Title 14, U.S. Code of Federal Regulations, National Archives and Records Administration, 34 pp.

  • Feingold, G., and A. J. Heymsfield, 1992: Parameterizations of condensational growth of droplets for use in general circulation models. J. Atmos. Sci., 49, 23252342, https://doi.org/10.1175/1520-0469(1992)049<2325:POCGOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geresdi, I., R. Rasmussen, W. Grabowski, and B. Bernstein, 2005: Sensitivity of freezing drizzle formation in stably stratified clouds to ice processes. Meteor. Atmos. Phys., 88, 91105, https://doi.org/10.1007/s00703-003-0048-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, S. D., 2006: A study of U.S. inflight icing accidents and incidents, 1978 to 2002. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, AIAA 2006-82, https://doi.org/10.2514/6.2006-82.

    • Crossref
    • Export Citation
  • Green, S. D., 2015: The icemaster database and an analysis of aircraft aerodynamic icing accidents and incidents. DOT/FAA/TC-14/44, 135 pp.

  • Harrington, J. Y., G. Feingold, and W. R. Cotton, 2000: Radiative impacts on the growth of a population of drops within simulated summertime Arctic stratus. J. Atmos. Sci., 57, 766785, https://doi.org/10.1175/1520-0469(2000)057<0766:RIOTGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauf, T., and F. Schroeder, 2006: Aircraft icing research flights in embedded convection. Meteor. Atmos. Phys., 91, 247265, https://doi.org/10.1007/s00703-004-0082-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, H. E., and J. Demmel, 1992: Analysis of three icing test flights reaching the aircraft-referred icing degree “severe.” DLR-Forschungsbericht Rep. 90-34, 114 pp.

  • Hudson, J. G., and S. S. Yum, 2001: Maritime-continental drizzle contrasts in small cumuli. J. Atmos. Sci., 58, 915926, https://doi.org/10.1175/1520-0469(2001)058<0915:MCDCIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and G. A. Norman Jr., 1988: The supercooled warm rain process and the specification of freezing precipitation. Mon. Wea. Rev., 116, 21722182, https://doi.org/10.1175/1520-0493(1988)116<2172:TSWRPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., R. M. Rasmussen, W. D. Hall, and G. Thompson, 2007: Observations of freezing drizzle aloft in extratropical cyclonic storms during IMPROVE-II. J. Atmos. Sci., 64, 30163043, https://doi.org/10.1175/JAS3999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., R. M. Rasmussen, E. Brandes, and F. McDonough, 2009: Freezing drizzle detection with WSR-88D radars. J. Appl. Meteor. Climatol., 48, 4160, https://doi.org/10.1175/2008JAMC1939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, and D. L. Marcotte, 2001: Recent Canadian research on in-flight aircraft icing. Can. Aeronaut. Space J., 47, 19.

    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., and Coauthors, 2005: First results from the Alliance Icing Research Study II. Preprints, AIAA 43rd Aerospace Science Meeting and Exhibit, Reno, NV, AIAA, AIAA 2005-252, https://doi.org/10.2514/6.2005-252.

    • Crossref
    • Export Citation
  • Jeck, R. K., 2002: Icing design envelopes (14 CFR Parts 25 and 29, Appendix C) converted to a distance-based format. FAA Rep. DOT/FAA/AR-00/30, 55 pp., https://www.faa.gov/aircraft/air_cert/design_approvals/small_airplanes/icing_protection_systems/faa_documents/media/acereportar-00-30.pdf.

  • King, W. D., D. A. Parkin, and J. Handsworth, 1978: A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 18091813, https://doi.org/10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2000: Drop growth due to high supersaturation caused by isobaric mixing. J. Atmos. Sci., 57, 16751685, https://doi.org/10.1175/1520-0469(2000)057<1675:DGDTHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristjánsson, J. E., T. Nordeng, J. Kristiansen, T. Iverson, O. Saetra, M. Koltzow, B. E. K. Nygaard, and E. Irvine, 2010: Polar NWP—Norwegian activities. WMO Workshop—A THORPEX Contribution to the Improvement of Polar Predictions on Weather to Seasonal Timescales, Oslo, Norway, WMO, https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Kristjansson.pdf.

  • Kristovich, D., and N. F. Laird, 1998: Observations of widespread lake-effect cloudiness: Influences of lake surface temperature and upwind conditions. Wea. Forecasting, 13, 811821, https://doi.org/10.1175/1520-0434(1998)013<0811:OOWLEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubryn, M., R. Flemming, B. Bernstein, and J. Pietruszka, 2011: Flight tests in natural icing of the PZL Mielec M28 commuter turboprop airplane. Int. Conf. on Aircraft and Engine Icing and Ground Deicing, Chicago, IL, SAE 2011-38-104, https://doi.org/10.4271/2011-38-0104.

    • Crossref
    • Export Citation
  • Landolt, S., M. K. Politovich, A. Schwartz, K. Goodrich, and C. Phillips, 2014: Weather support for terminal area icing weather information. Sixth AIAA Atmospheric and Space Environments Conf. 2014, AIAA, AIAA 2014-2067, https://doi.org/10.2514/6.2014-2067.

    • Crossref
    • Export Citation
  • Lasher-Trapp, S., S. Anderson-Bereznicki, A. Shackelford, C. H. Twohy, and J. G. Hudson, 2008: The influence of droplet number concentration and giant aerosol particles on supercooled large drop formation in wintertime stratiform clouds. J. Appl. Meteor. Climatol., 47, 26592678, https://doi.org/10.1175/2008JAMC1807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bot, C., 2004: SIGMA: System of Icing Geographic Identification in Meteorology for Aviation. 11th Conf. on Aviation Range and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., P6.5, http://ams. confex.com/ams/pdfpapers/81704.pdf.

  • Lee, T. F., F. J. Turk, and K. Richardson, 1997: Stratus and fog products using GOES-8–9 3.9-μm data. Wea. Forecasting, 12, 664677, https://doi.org/10.1175/1520-0434(1997)012<0664:SAFPUG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., M. K. Politovich, B. C. Bernstein, F. M. Ralph, P. J. Neiman, R. Ashenden, and J. Bresch, 1997: Meteorological conditions associated with the ATR-72 aircraft accident near Roselawn, Indiana on 31 October 1994. Bull. Amer. Meteor. Soc., 78, 4152, https://doi.org/10.1175/1520-0477(1997)078<0041:MCAWTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonough, F., and B. C. Bernstein, 2004: A case study of a Great Lakes supercooled large droplet icing cloud. 11th Conf. on Aviation, Range and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., P6.15, https://ams.confex.com/ams/pdfpapers/81884.pdf.

  • McDonough, F., B. C. Bernstein, and M. K. Politovich, 2004: The forecast icing potential algorithm. 42nd AIAA Aerospace Science Meeting and Exhibit, Reno, NV, AIAA, AIAA 98-0557, https://doi.org/10.2514/6.2004-231.

    • Crossref
    • Export Citation
  • McDonough, F., C. A. Wolff, and M. K. Politovich, 2008: Forecasting supercooled large drop icing conditions. 13th Conf. on Aviation, Range and Aerospace Meteorology, New Orleans, LA, Amer. Meteor. Soc., 13.5, https://ams.confex.com/ams/pdfpapers/134167.pdf.

  • Messinger, B. L., 1953: Equilibrium temperature of an unheated icing surface as a function of airspeed. J. Aeronaut. Sci., 20, 2942, https://doi.org/10.2514/8.2520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D., T. Ratvasky, B. Bernstein, F. McDonough, and J. W. Strapp, 1997: NASA/ FAA/NCAR supercooled large droplet icing flight research: Summary of winter 96-97 flight operations. 36th Aerospace Science Meeting and Exhibit, Reno, NV, AIAA, AIAA 98-0557, https://doi.org/10.2514/6.1998-577.

    • Crossref
    • Export Citation
  • Miller, R. J., B. C. Bernstein, and L. Koch, 1999: A climatology of freezing rain in the Columbia Basin. Preprints, 17th Conf. on Weather Analysis and Forecasting, Denver, CO, Amer. Meteor. Soc., 48–52.

  • NTSB, 1996: Aircraft accident report: In-flight icing encounter and loss of control, Simmons Airlines, d.b.a. American Eagle flight 4184, Avions de Transport Regional (ATR) Model 72-212, N401MA, Roselawn Indiana, October 31, 1994. Safety Board Rep. NTSB/AAR-96/01, PB96-910401, DCA95MA001, Vol. 1, 341 pp.

  • NTSB, 1998: Aircraft accident report: In-flight icing encounter and uncontrolled collision with terrain, COMAIR flight 3272, Embraer EMB-120RT, N265 CA, Monroe MI, January 9, 1997. Safety Board Rep. NTSB/AAR-98/04, PB08-910404, DCA97MA017, 348 pp.

  • NTSB, 2002: Accident number DCA01MA031. Aviation Accident Final Rep., 9 pp., https://reports.aviation-safety.net/2001/20010319-0_E120_N266CA.pdf.

  • NTSB, 2006: Incident number LAX06IA076. Aviation Incident Data Summary, https://www.ntsb.gov/_layouts/ntsb.aviation/brief2.aspx?ev_id=20060109X00033&ntsbno=LAX06IA076&akey=1.

  • NTSB, 2007: Crash during approach to Landing, Circuit City Stores, Inc. Cessna Citation 560, N500AT, Pueblo, Colorado, February 16, 2005. Aircraft Accident Rep. NTSB/AAR-07/02, 86 pp., https://ntsb.gov/investigations/AccidentReports/Reports/AAR0702.pdf.

  • Pobanz, B., J. Marwitz, and M. Politovich, 1994: Conditions associated with large-drop regions. J. Appl. Meteor., 33, 13661372, https://doi.org/10.1175/1520-0450(1994)033<1366:CAWLDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., 1989: Aircraft icing caused by large supercooled droplets. J. Appl. Meteor., 28, 856868, https://doi.org/10.1175/1520-0450(1989)028<0856:AICBLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and B. C. Bernstein, 1995: Production and depletion of supercooled liquid water in a Colorado winter storm. J. Appl. Meteor., 34, 26312648, https://doi.org/10.1175/1520-0450(1995)034<2631:PADOSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp.

    • Crossref
    • Export Citation
  • Rasmussen, R. M., and Coauthors, 1992: Winter Icing and Storms Project (WISP). Bull. Amer. Meteor. Soc., 73, 951974, https://doi.org/10.1175/1520-0477(1992)073<0951:WIASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., B. C. Bernstein, M. Murakami, G. Stossmeister, J. Reisner, and B. Stankov, 1995: The 1990 Valentine’s Day arctic outbreak. Part I: Mesoscale and microscale structure and evolution of a Colorado Front Range shallow upslope cloud. J. Appl. Meteor., 34, 14811511, https://doi.org/10.1175/1520-0450-34.7.1481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., I. Geresdi, G. Thompson, K. Manning, and E. Karplus, 2002: Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci., 59, 837860, https://doi.org/10.1175/1520-0469(2002)059<0837:FDFISS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratvasky, T. P., B. Barnhart, and S. Lee, 2010: Current methods for modeling and simulating icing effects on aircraft performance, stability and control. J. Aircr., 47, 201211, https://doi.org/10.2514/1.44650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2000: The relative importance of warm rain and ice processes in freezing precipitation events. J. Appl. Meteor., 39, 11851195, https://doi.org/10.1175/1520-0450(2000)039<1185:TRIOWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reehorst, A., D. Brinker, M. Politovich, D. Serke, C. Ryerson, A. Pazmany, and F. Solheim, 2009: Progress towards the remote sensing of aircraft icing hazards. NASA/TM—2009-215828, 22 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100001322.pdf.

    • Crossref
    • Export Citation
  • Rosenfeld, D., and Coauthors, 2013: The common occurrence of highly supercooled drizzle and rain near the coastal regions of the western United States. J. Geophys. Res. Atmos., 118, 98199833, https://doi.org/10.1002/jgrd.50529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sand, W. R., W. A. Cooper, M. K. Politovich, and D. L. Veal, 1984: Icing conditions encountered by a research aircraft. J. Climate Appl. Meteor., 23, 14271440, https://doi.org/10.1175/0733-3021-23.10.1427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serke, D., M. King, and A. Reehorst, 2015: Initial results from radiometer and polarimetric radar-based icing algorithms compared to in-situ data. Int. Conf. on Icing of Aircraft, Engines and Structures, Prague, Czech Republic, SAE, 2015-01-2153, https://doi.org/10.4271/2015-01-2153.

    • Crossref
    • Export Citation
  • Serke, D., S. Tessendorf, B. Geerts, J. R. French, B. Pokharel, D. Jacobson, and D. Albo, 2017: Initial performance evaluation of a radar-based supercooled water detection algorithm during the SNOWIE Field Campaign. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 6, https://ams.confex.com/ams/38RADAR/webprogram/Paper320660.html.

  • Smith, W. L., Jr., P. Minnis, C. Fleeger, D. Spangenberg, R. Palikonda, and L. Nguyen, 2012: Determining the flight icing threat to aircraft with single-layer cloud parameters derived from operational satellite data. J. Appl. Meteor. Climatol., 51, 17941810, https://doi.org/10.1175/JAMC-D-12-057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., and Coauthors, 2003: Wind tunnel measurements of the response of hot-wire liquid water content instruments to large droplets. J. Atmos. Oceanic Technol., 20, 791806, https://doi.org/10.1175/1520-0426(2003)020<0791:WTMOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tafferner, A., T. Hauf, C. Leifeld, T. Hafner, H. Leykauf, and U. Voigt, 2003: ADWICE: Advanced Diagnosis and Warning System for Aircraft Icing Environments. Wea. Forecasting, 18, 184203, https://doi.org/10.1175/1520-0434(2003)018<0184:aadaws>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., M. Xu, and P. A. Jimenez, 2017a: Towards improving representation of sub-grid-scale clouds in WRF and application to aircraft icing forecasts. 18th Conf. on Aviation, Range and Aerospace, Seattle, WA, Amer. Meteor. Soc., 7.2, https://ams.confex.com/ams/97Annual/webprogram/Paper313599.html.

  • Thompson, G., M. K. Politovich, and R. M. Rasmussen, 2017b: A numerical weather model’s ability to predict characteristics of aircraft icing environments. Wea. Forecasting, 32, 207221, https://doi.org/10.1175/waf-d-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnic, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. Zhong, W. J. Shaw, J. M. Hubbe, X. Bian, and J. Mittelstadt, 2001: Cold pools in the Columbia basin. Wea. Forecasting, 16, 432447, https://doi.org/10.1175/1520-0434(2001)016<0432:CPITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., M. Donovan, D. Smalley, R. Hallowell, E. Griffin, K. Hood, and B. Bennett, 2015: The 2013 Buffalo Area Icing and Radar Study (BAIRS). MIT Lincoln Laboratory Project Rep. ATC-419, 154 pp.

  • Wolff, C. A., F. McDonough, M. K. Politovich, and G. M. Cunning, 2009: The forecast icing product: Recent upgrades and improvements. First AIAA Atmospheric and Space Environments Conf., Aerospace Science Meeting and Exhibit, San Antonio, TX, AIAA, AIAA 2009-3531, https://doi.org/10.2514/6.2009-3531.

    • Crossref
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033, https://doi.org/10.1175/JAS3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, W. B., 1999: User manual for the NASA Glenn ice accretion code LEWICE version 2.0. NASA Contractor Rep. 1999-209409, 182 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4107 2658 152
PDF Downloads 987 129 11