Abstract
Northeast China (NEC) has sustained economic losses in recent years because of extreme precipitation events. Despite many efforts, it remains very difficult to predict these extreme events. In this study, we documented the characteristics of extreme precipitation days (EPD) over NEC and established a seasonal prediction model using a year-to-year increment (DY) approach. The results show that most of the EPD over NEC occurred during midsummer, along with large values concentrated over the Greater and Lesser Khingan Mountains and Changbai Mountain. Two variables—the preceding early spring soil moisture DY over central Asia and the sea surface temperature DY in the tropical Atlantic Ocean—were used to construct the statistical model to predict the EPD DY over NEC. These two factors influenced the EPD by modulating the moisture transport over NEC. Cross-validation tests for the period from 1962 to 2016 and independent hindcasts for the period from 1997 to 2016 indicated that the two variables gave good predictions of the EPD over NEC. The observed and predicted year-to-year increments in EPD were well correlated, with a correlation coefficient of 0.65 for the period from 1962 to 2016 in the cross-validation test. In addition, the EPD DY covaried coherently with the midsummer precipitation amount DY over NEC, and those two predictors also gave good predictions for the midsummer precipitation amount over NEC. The correlation coefficient is 0.68 between the observed and predicted year-to-year increment in the amount of midsummer precipitation from 1962 to 2016 in a cross-validation test.
© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).