Stratospheric Gravity Wave Products from Satellite Infrared Nadir Radiances in the Planning, Execution, and Validation of Aircraft Measurements during DEEPWAVE

Stephen D. Eckermann Space Science Division, U.S. Naval Research Laboratory, Washington, D.C.

Search for other papers by Stephen D. Eckermann in
Current site
Google Scholar
PubMed
Close
,
James D. Doyle Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by James D. Doyle in
Current site
Google Scholar
PubMed
Close
,
P. Alex Reinecke Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by P. Alex Reinecke in
Current site
Google Scholar
PubMed
Close
,
Carolyn A. Reynolds Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by Carolyn A. Reynolds in
Current site
Google Scholar
PubMed
Close
,
Ronald B. Smith Yale University, New Haven, Connecticut

Search for other papers by Ronald B. Smith in
Current site
Google Scholar
PubMed
Close
,
David C. Fritts GATS Inc., Boulder, Colorado

Search for other papers by David C. Fritts in
Current site
Google Scholar
PubMed
Close
, and
Andreas Dörnbrack German Aerospace Center, Oberpfaffenhofen, Germany

Search for other papers by Andreas Dörnbrack in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Gravity wave perturbations in 15-μm nadir radiances from the Atmospheric Infrared Sounder (AIRS) and Cross-Track Infrared Sounder (CrIS) informed scientific flight planning for the Deep Propagating Gravity Wave Experiment (DEEPWAVE). AIRS observations from 2003 to 2011 identified the South Island of New Zealand during June–July as a “natural laboratory” for observing deep-propagating gravity wave dynamics. Near-real-time AIRS and CrIS gravity wave products monitored wave activity in and around New Zealand continuously within 10 regions of scientific interest, providing nowcast guidance and validation for flight planners. A novel technique used these gravity wave products to validate upstream forecasts of nonorographic gravity waves with 1–2-day lead times, providing time to plan flight intercepts as tropospheric westerlies brought forecast source regions into range. Postanalysis verifies the choice of 15 μm radiances for nowcasting, since 4.3-μm gravity wave products yielded spurious diurnal cycles, provided no altitude sensitivity, and proved relatively insensitive to deep gravity wave activity over the South Island. Comparisons of DEEPWAVE flight tracks with AIRS and CrIS gravity wave maps highlight successful repeated vectoring of the aircraft into regions of deep orographic and nonorographic gravity wave activity, and how background winds control the amplitude of waves in radiance perturbation maps. We discuss how gravity wave information in AIRS and CrIS radiances might be directly assimilated into future operational forecasting systems.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen D. Eckermann, stephen.eckermann@nrl.navy.mil

Abstract

Gravity wave perturbations in 15-μm nadir radiances from the Atmospheric Infrared Sounder (AIRS) and Cross-Track Infrared Sounder (CrIS) informed scientific flight planning for the Deep Propagating Gravity Wave Experiment (DEEPWAVE). AIRS observations from 2003 to 2011 identified the South Island of New Zealand during June–July as a “natural laboratory” for observing deep-propagating gravity wave dynamics. Near-real-time AIRS and CrIS gravity wave products monitored wave activity in and around New Zealand continuously within 10 regions of scientific interest, providing nowcast guidance and validation for flight planners. A novel technique used these gravity wave products to validate upstream forecasts of nonorographic gravity waves with 1–2-day lead times, providing time to plan flight intercepts as tropospheric westerlies brought forecast source regions into range. Postanalysis verifies the choice of 15 μm radiances for nowcasting, since 4.3-μm gravity wave products yielded spurious diurnal cycles, provided no altitude sensitivity, and proved relatively insensitive to deep gravity wave activity over the South Island. Comparisons of DEEPWAVE flight tracks with AIRS and CrIS gravity wave maps highlight successful repeated vectoring of the aircraft into regions of deep orographic and nonorographic gravity wave activity, and how background winds control the amplitude of waves in radiance perturbation maps. We discuss how gravity wave information in AIRS and CrIS radiances might be directly assimilated into future operational forecasting systems.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen D. Eckermann, stephen.eckermann@nrl.navy.mil
Save
  • Alexander, M. J., and C. Barnet, 2007: Using satellite observations to constrain parameterizations of gravity wave effects for global models. J. Atmos. Sci., 64, 16521665, https://doi.org/10.1175/JAS3897.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, https://doi.org/10.1002/QJ.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreassen, Ø., P. Ø. Hvidsten, D. C. Fritts, and S. Arendt, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution. J. Fluid Mech., 367, 2746, https://doi.org/10.1017/S0022112098001645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264, https://doi.org/10.1109/TGRS.2002.808356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnet, C. D., J. M. Blaisdell, and J. Susskind, 2000: Practical methods for rapid and accurate computation of interferometric spectra for remote sensing applications. IEEE Trans. Geosci. Remote Sens., 38, 169183, https://doi.org/10.1109/36.823910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beagley, S. R., C. D. Boone, V. I. Fomichev, J. J. Jin, K. Semeniuk, J. C. McConnell, and P. F. Bernath, 2010: First multi-year occultation observations of CO2 in the MLT by ACE satellite: Observations and analysis using the extended CMAM. Atmos. Chem. Phys., 10, 11331153, https://doi.org/10.5194/acp-10-1133-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bossert, K., and Coauthors, 2015: Momentum flux estimates accompanying multiscale gravity waves over Mount Cook, New Zealand, on 13 July 2014 during the DEEPWAVE campaign. J. Geophys. Res. Atmos., 120, 93239337, https://doi.org/10.1002/2015JD023197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bossert, K., C. G. Kruse, C. J. Heale, D. C. Fritts, B. P. Williams, J. B. Snively, P.-D. Pautet, and M. J. Taylor, 2017: Secondary gravity wave generation over New Zealand during the DEEPWAVE campaign. J. Geophys. Res. Atmos., 122, 78347850, https://doi.org/10.1002/2016JD026079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bramberger, M., and Coauthors, 2017: Does strong tropospheric forcing cause large-amplitude mesospheric gravity waves? A DEEPWAVE case study. J. Geophys. Res. Atmos., 122, 11 42211 443, https://doi.org/10.1002/2017JD027371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., Y. Han, P. van Delst, and F. Weng, 2013: Assessment of shortwave infrared sea surface reflection and nonlocal thermodynamic equilibrium effects in the Community Radiative Transfer Model using IASI data. J. Atmos. Oceanic Technol., 30, 21522160, https://doi.org/10.1175/JTECH-D-12-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeSouza-Machado, S. G., L. L. Strow, S. E. Hannon, H. E. Motteler, M. López-Puertas, B. Funke, and D. P. Edwards, 2007: Fast forward radiative transfer modeling of 4.3 μm nonlocal thermodynamic equilibrium effects for infrared temperature sounders. Geophys. Res. Lett., 34, L01802, https://doi.org/10.1029/2006GL026684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., Q. Jiang, R. B. Smith, and V. Grubišić, 2011: Three-dimensional characteristics of stratospheric mountain waves during T-REX. Mon. Wea. Rev., 139, 323, https://doi.org/10.1175/2010MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and P. Preusse, 1999: Global measurements of stratospheric mountain waves from space. Science, 286, 15341537, https://doi.org/10.1126/science.286.5444.1534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and D. L. Wu, 2006: Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 1: Simple forward model. Atmos. Chem. Phys., 6, 33253341, https://doi.org/10.5194/acp-6-3325-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and D. L. Wu, 2012: Satellite detection of orographic gravity-wave activity in the winter subtropical stratosphere over Australia and Africa. Geophys. Res. Lett., 39, L21807, https://doi.org/10.1029/2012GL053791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and Coauthors, 2006: Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 2: Validation case study. Atmos. Chem. Phys., 6, 33433362, https://doi.org/10.5194/acp-6-3343-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., L. Hoffmann, M. Höpfner, D. L. Wu, and M. J. Alexander, 2009a: Antarctic NAT PSC belt of June 2003: Observational validation of the mountain wave seeding hypothesis. Geophys. Res. Lett., 36, L02807, https://doi.org/10.1029/2008GL036629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and Coauthors, 2009b: High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007. J. Atmos. Sol.-Terr. Phys., 71, 531551, https://doi.org/10.1016/j.jastp.2008.09.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., J. P. McCormack, J. Ma, T. F. Hogan, and K. A. Zawdie, 2014: Stratospheric analysis and forecast errors using hybrid and sigma coordinates. Mon. Wea. Rev., 142, 476485, https://doi.org/10.1175/MWR-D-13-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and Coauthors, 2016: Dynamics of orographic gravity waves observed in the mesosphere over the Auckland Islands during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). J. Atmos. Sci., 73, 38553876, https://doi.org/10.1175/JAS-D-16-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and Coauthors, 2018: High-altitude (0–100 km) global atmospheric reanalysis system: Description and application to the 2014 austral winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Mon. Wea. Rev., 146, 26392666, https://doi.org/10.1175/MWR-D-17-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehard, B., and Coauthors, 2017: Horizontal propagation of large-amplitude mountain waves into the polar night jet. J. Geophys. Res. Atmos., 122, 14231436, https://doi.org/10.1002/2016JD025621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2016: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425453, https://doi.org/10.1175/BAMS-D-14-00269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gisinger, S., and Coauthors, 2017: Atmospheric conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Mon. Wea. Rev., 145, 42494275, https://doi.org/10.1175/MWR-D-16-0435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, R. A., and Coauthors, 2006: The MaCWAVE program to study gravity wave influences on the polar mesosphere. Ann. Geophys., 24, 11591173, https://doi.org/10.5194/ANGEO-24-1159-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., H. Kilcoyne, H. Cikanek, and A. Mehta, 2013: Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system. J. Geophys. Res. Atmos., 118, 13 46313 475, https://doi.org/10.1002/2013JD020389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, J., D. L. Wu, and S. D. Eckermann, 2012: Gravity wave variances and propagation derived from AIRS radiances. Atmos. Chem. Phys., 12, 17011720, https://doi.org/10.5194/acp-12-1701-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, J., J. Yue, and D. L. Wu, 2015: Global survey of concentric gravity waves in AIRS images and ECMWF analysis. J. Geophys. Res. Atmos., 120, 22102228, https://doi.org/10.1002/2014JD022527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, S., C. Snyder, W. C. Skamarock, J. Anderson, and N. Collins, 2017: Ensemble Kalman filter data assimilation for the Model for Prediction Across Scales (MPAS). Mon. Wea. Rev., 145, 46734692, https://doi.org/10.1175/MWR-D-17-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Y., and Coauthors, 2013: Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos., 118, 12 73412 748, https://doi.org/10.1002/2013JD020344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Y., L. Suwinski, D. Tobin, and Y. Chen, 2015: Effect of self-apodization correction on Cross-track Infrared Sounder radiance noise. Appl. Opt., 54, 10 11410 122, https://doi.org/10.1364/AO.54.010114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., J. D. Doyle, S. D. Eckermann, Q. Jiang, and P. A. Reinecke, 2014: What is the source of the stratospheric gravity wave belt in austral winter? J. Atmos. Sci., 71, 15831592, https://doi.org/10.1175/JAS-D-13-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and M. J. Alexander, 2009: Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies. J. Geophys. Res., 114, D07105, https://doi.org/10.1029/2008JD011241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., X. Xue, and M. J. Alexander, 2013: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. J. Geophys. Res. Atmos., 118, 416434, https://doi.org/10.1029/2012JD018658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., M. J. Alexander, C. Clerbaux, A. W. Grimsdell, C. I. Meyer, T. Rößler, and B. Tournier, 2014: Intercomparison of stratospheric gravity wave observations with AIRS and IASI. Atmos. Meas. Tech., 7, 45174537, https://doi.org/10.5194/amt-7-4517-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., A. W. Grimsdell, and M. J. Alexander, 2016: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations. Atmos. Chem. Phys., 16, 93819397, https://doi.org/10.5194/acp-16-9381-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., R. Spang, A. Orr, M. J. Alexander, L. A. Holt, and O. Stein, 2017: A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation. Atmos. Chem. Phys., 17, 29012920, https://doi.org/10.5194/acp-17-2901-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and Coauthors, 2003: Tropical cumulus convection and upward-propagating waves in middle-atmospheric GCMs. J. Atmos. Sci., 60, 27652782, https://doi.org/10.1175/1520-0469(2003)060<2765:TCCAUW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jewtoukoff, V., A. Hertzog, R. Plougonven, A. de la Camara, and F. Lott, 2015: Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses. J. Atmos. Sci., 72, 34493468, https://doi.org/10.1175/JAS-D-14-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., and J. D. Doyle, 2008: On the diurnal variation of mountain waves. J. Atmos. Sci., 65, 13601377, https://doi.org/10.1175/2007JAS2460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., J. D. Doyle, S. D. Eckermann, and B. P. Williams, 2019: Stratospheric trailing gravity waves from New Zealand. J. Atmos. Sci., 76, 15651586, https://doi.org/10.1175/JAS-D-18-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaifler, B., N. Kaifler, B. Ehard, A. Dörnbrack, M. Rapp, and D. C. Fritts, 2015: Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere. Geophys. Res. Lett., 42, 94889494, https://doi.org/10.1002/2015GL066465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, https://doi.org/10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, C. G., R. B. Smith, and S. D. Eckermann, 2016: The midlatitude lower-stratospheric mountain wave “valve layer.” J. Atmos. Sci., 73, 50815100, https://doi.org/10.1175/JAS-D-16-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laursen, K. K., D. P. Jorgensen, G. P. Brasseur, S. L. Ustin, and J. R. Huning, 2006: HIAPER: The next generation NSF/NCAR research aircraft. Bull. Amer. Meteor. Soc., 87, 896909, https://doi.org/10.1175/BAMS-87-7-896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and F. Weng, 2013: Using advanced matrix operator (AMOM) in Community Radiative Transfer Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 12111218, https://doi.org/10.1109/JSTARS.2013.2247026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Puertas, M., and F. W. Taylor, 1989: Carbon dioxide 4.3-μm emission in the Earth’s atmosphere: A comparison between Nimbus 7 SAMS measurements and non-local thermodynamic equilibrium radiative transfer calculations. J. Geophys. Res., 94, 13 04513 068, https://doi.org/10.1029/JD094iD10p13045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 2010: Initialization. Data Assimilation: Making Sense of Observations, W. Lahoz, B. Khattatov, and R. Ménard, Eds., Springer, 241–260.

    • Crossref
    • Export Citation
  • McLandress, C., M. J. Alexander, and D. L. Wu, 2000: Microwave Limb Sounder observations of gravity waves in the stratosphere: A climatology and interpretation. J. Geophys. Res., 105, 11 94711 967, https://doi.org/10.1029/2000JD900097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., and Coauthors, 2017: Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI). Geosci. Model Dev., 10, 639671, https://doi.org/10.5194/gmd-10-639-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, K. J., and Coauthors, 2015: LANCE, NASA’s Land, Atmosphere Near Real-Time Capability for EOS. Time-Sensitive Remote Sensing, C. D. Lippitt, D. A. Stow, and L. L. Coulter, Eds., 1st ed. Springer, 113–127, https://doi.org/10.1007/978-1-4939-2602-2_8.

    • Crossref
    • Export Citation
  • O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, https://doi.org/10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pagano, T. S., H. H. Aumann, D. E. Hagan, and K. Overoye, 2003: Prelaunch and in-flight radiometric calibration of the Atmospheric Infrared Sounder (AIRS). IEEE Trans. Geosci. Remote Sens., 41, 265273, https://doi.org/10.1109/TGRS.2002.808324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pagano, T. S., S. Broberg, H. H. Aumann, D. Elliott, E. Manning, and L. Strow, 2012: Performance status of the Atmospheric Infrared Sounder ten years after launch. Proc. SPIE, 8527, 852703, https://doi.org/10.1117/12.977309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2013: Summarizing the first ten years of NASA’s Aqua mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 11791188, https://doi.org/10.1109/JSTARS.2013.2239608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pautet, P.-D., and Coauthors, 2016: Large amplitude mesospheric response to an orographic wave generated over the Southern Ocean Auckland Islands (50.7°S) during the DEEPWAVE project. J. Geophys. Res. Atmos., 121, 14311441, https://doi.org/10.1002/2015JD024336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pautet, P.-D., M. J. Taylor, S. D. Eckermann, and N. Criddle, 2019: Regional distribution of mesospheric small-scale gravity waves during DEEPWAVE. J. Geophys. Res. Atmos., 124, 70697081, https://doi.org/10.1029/2019JD030271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portele, T. C., A. Dörnbrack, J. S. Wagner, S. Gisinger, B. Ehard, P.-D. Pautet, and M. Rapp, 2018: Mountain-wave propagation under transient tropospheric forcing: A DEEPWAVE case study. Mon. Wea. Rev., 146, 18611888, https://doi.org/10.1175/MWR-D-17-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preusse, P., and Coauthors, 2006: Tropopause to mesopause gravity waves in August: Measurement and modeling. J. Atmos. Sol.-Terr. Phys., 68, 17301751, https://doi.org/10.1016/j.jastp.2005.10.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapp, M., A. Dörnbrack, and B. Kaifler, 2018: An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data. Atmos. Meas. Tech., 11, 10311048, https://doi.org/10.5194/amt-11-1031-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roscoe, H. K., J. D. Shanklin, and S. R. Colwell, 2005: Has the Antarctic vortex split before 2002? J. Atmos. Sci., 62, 581588, https://doi.org/10.1175/JAS-3331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutt, I. C., J. Thuburn, and A. Staniforth, 2006: A variational method for orographic filtering in NWP and climate models. Quart. J. Roy. Meteor. Soc., 132, 17951813, https://doi.org/10.1256/qj.05.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, S., P. Preusse, M. Ern, and M. Riese, 2009: Gravity waves resolved in ECMWF and measured by SABER. Geophys. Res. Lett., 36, L10805, https://doi.org/10.1029/2008GL037054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiotani, M., N. Shimoda, and I. Hirota, 1993: Interannual variability of the stratospheric circulation in the southern hemisphere. Quart. J. Roy. Meteor. Soc., 119, 531546, https://doi.org/10.1002/qj.49711951110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Coauthors, 2016: Stratospheric gravity wave fluxes and scales during DEEPWAVE. J. Atmos. Sci., 73, 28512869, https://doi.org/10.1175/JAS-D-15-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., A. R. Brown, and S. Webster, 2016: Orographic drag on islands in the NWP mountain grey zone. Quart. J. Roy. Meteor. Soc., 142, 31283137, https://doi.org/10.1002/qj.2894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D. L., P. Preusse, S. D. Eckermann, J. H. Jiang, M. de la Torre Juarez, L. Coy, and D. Y. Wang, 2006: Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques. Adv. Space Res., 37, 22692277, https://doi.org/10.1016/j.asr.2005.07.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, M., 2016: Bias characterization of CrIS shortwave temperature sounding channels using fast NLTE model and GFS forecast field. J. Geophys. Res. Atmos., 121, 12481263, https://doi.org/10.1002/2015JD023876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavyalov, V., and Coauthors, 2013: Noise performance of the CrIS instrument. J. Geophys. Res. Atmos., 118, 13 10813 120, https://doi.org/10.1002/2013JD020457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., M. Divakarla, and X. Liu, 2016: An overview of the Joint Polar Satellite System (JPSS) science data product calibration and validation. Remote Sens., 8, 139, https://doi.org/10.3390/rs8020139.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15292 12712 154
PDF Downloads 545 97 3