Observational and Modeling Study of Ice Hydrometeor Radar Dual-Wavelength Ratios

Sergey Y. Matrosov Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Sergey Y. Matrosov in
Current site
Google Scholar
PubMed
Close
,
Maximilian Maahn Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Maximilian Maahn in
Current site
Google Scholar
PubMed
Close
, and
Gijs de Boer Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Gijs de Boer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influence of ice hydrometeor shape on the dual-wavelength ratio (DWR) of radar reflectivities at millimeter-wavelength frequencies is studied theoretically and on the basis of observations. Data from dual-frequency (Ka–W bands) radar show that, for vertically pointing measurements, DWR increasing trends with reflectivity Ze are very pronounced when Ka-band Ze is greater than about 0 dBZ and that DWR and Ze values are usually well correlated. This correlation is explained by strong relations between hydrometeor characteristic size and both of these radar variables. The observed DWR variability for a given level of reflectivity is as large as 8 dB, which is in part due to changes in mean hydrometeor shape as expressed in terms of the particle aspect ratio. Hydrometeors with a higher degree of nonsphericity exhibit lower DWR values when compared with quasi-spherical particles because of near-zenith reflectivity enhancements for particles outside the Rayleigh-scattering regime. When particle mass–size relations do not change significantly (e.g., for low-rime conditions), DWR can be used to differentiate between quasi-spherical and highly nonspherical hydrometeors because (for a given reflectivity value) DWR tends to increase as particles become more spherical. Another approach for differentiating among different degrees of nonsphericity for larger scatterers is based on analyzing DWR changes as a function of radar elevation angle. These changes are more pronounced for highly nonspherical particles and can exceed 10 dB. Measurements of snowfall spatiotemporally collocated with spaceborne CloudSat W-band radar and ground-based S-band operational weather radars also indicate that DWR values are generally smaller for ice hydrometeors with higher degrees of nonsphericity, which, for the same level of S-band reflectivity, exhibit greater differential reflectivity values.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sergey Y. Matrosov, sergey.matrosov@noaa.gov

Abstract

The influence of ice hydrometeor shape on the dual-wavelength ratio (DWR) of radar reflectivities at millimeter-wavelength frequencies is studied theoretically and on the basis of observations. Data from dual-frequency (Ka–W bands) radar show that, for vertically pointing measurements, DWR increasing trends with reflectivity Ze are very pronounced when Ka-band Ze is greater than about 0 dBZ and that DWR and Ze values are usually well correlated. This correlation is explained by strong relations between hydrometeor characteristic size and both of these radar variables. The observed DWR variability for a given level of reflectivity is as large as 8 dB, which is in part due to changes in mean hydrometeor shape as expressed in terms of the particle aspect ratio. Hydrometeors with a higher degree of nonsphericity exhibit lower DWR values when compared with quasi-spherical particles because of near-zenith reflectivity enhancements for particles outside the Rayleigh-scattering regime. When particle mass–size relations do not change significantly (e.g., for low-rime conditions), DWR can be used to differentiate between quasi-spherical and highly nonspherical hydrometeors because (for a given reflectivity value) DWR tends to increase as particles become more spherical. Another approach for differentiating among different degrees of nonsphericity for larger scatterers is based on analyzing DWR changes as a function of radar elevation angle. These changes are more pronounced for highly nonspherical particles and can exceed 10 dB. Measurements of snowfall spatiotemporally collocated with spaceborne CloudSat W-band radar and ground-based S-band operational weather radars also indicate that DWR values are generally smaller for ice hydrometeors with higher degrees of nonsphericity, which, for the same level of S-band reflectivity, exhibit greater differential reflectivity values.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sergey Y. Matrosov, sergey.matrosov@noaa.gov
Save
  • Callaghan, T. V., and Coauthors, 2011: Multiple effects of changes in Arctic snow cover. Ambio, 40, 3245, https://doi.org/10.1007/s13280-011-0213-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, R. J., and Coauthors, 2018: Evaluation of triple-frequency radar retrieval of snowfall properties using coincident airborne in situ observations during OLYMPEX. Geophys. Res. Lett., 45, 57525760, https://doi.org/10.1029/2018GL077997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfani, E., and D. L. Mitchell, 2017: Growth of ice particle mass and projected area during riming. Atmos. Chem. Phys., 17, 12411257, https://doi.org/10.5194/acp-17-1241-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall. Atmos. Meas. Tech., 5, 26252633, https://doi.org/10.5194/amt-5-2625-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, https://doi.org/10.1175/2010JAS3379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, https://doi.org/10.1175/JAS-D-12-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and C. D. Westbrook, 2014: Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar Rayleigh–Gans approximation. J. Atmos. Sci., 71, 32923301, https://doi.org/10.1175/JAS-D-13-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J Appl. Meteor. Climatol., 51, 655671, https://doi.org/10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., V. N. Bringi, A. Newman, G. Lee, D. Moisseev, and B. M. Notaros, 2019: Dual-wavelength radar technique development for snow rate estimation: A case study from GCPEx. Atmos. Meas. Tech., 12, 14091427, https://doi.org/10.5194/amt-12-1409-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., A. von Lerber, J. Tiira, D. Moisseev, P. Kollias, and J. Leinonen, 2015: Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos., 120, 60346055, https://doi.org/10.1002/2015JD023156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., N. Bharadwaj, K. Widener, I. Jo, and K. Johnson, 2014: Scanning ARM cloud radars: Operational sampling strategies. J. Atmos. Oceanic Technol., 31, 569582, https://doi.org/10.1175/JTECH-D-13-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 12991302, https://doi.org/10.1029/1999GL900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and Coauthors, 2018: Retrieval of snowflake microphysical properties from multifrequency radar observations. Atmos. Meas. Tech., 11, 54715488, https://doi.org/10.5194/amt-11-5471-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, T. Iguchi, and A. Detwiler, 2005: Use of dual-wavelength radar for snow parameter estimates. J. Atmos. Oceanic Technol., 22, 14941506, https://doi.org/10.1175/JTECH1808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, L. Tian, and G. M. Heymsfield, 2008: Retrieval of snow and rain from combined X- and W-band airborne radar measurements. IEEE Trans. Geosci. Remote Sens., 46, 15141524, https://doi.org/10.1109/TGRS.2008.916079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., Z. Jiang, K. Aydin, J. Verlinde, E. Clothiaux, and G. Botta, 2016: A polarimetric scattering database for non-spherical ice particles at microwave wavelengths. Atmos. Meas. Tech., 9, 51195134, https://doi.org/10.5194/amt-9-5119-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maahn, M., 2019: MASC snow particle images. ARM Mobile Facility (OLI) Oliktok Point, Alaska; AMF3 (M1). ARM Data Center, accessed 21 February 2019, https://doi.org/10.5439/1497701.

    • Crossref
    • Export Citation
  • Maahn, M., and U. Löhnert, 2017: Potential of higher-order moments and slopes of the radar Doppler spectrum for retrieving microphysical and kinematic properties of Arctic ice clouds. J. Appl. Meteor. Climatol., 56, 263282, https://doi.org/10.1175/JAMC-D-16-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maahn, M., U. Löhnert, P. Kolias, R. C. Jackson, and G. M. McFarquhar, 2015: Developing and evaluating ice cloud parameterizations for forward modeling of radar moments using in situ aircraft observations. J. Atmos. Oceanic Technol., 32, 880903, https://doi.org/10.1175/JTECH-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, A. G. Hallar, I. B. McCubbin, S. Y. Matrosov, and M. D. Shupe, 2013: Enhanced radar backscattering due to oriented ice particles at 95 GHz during StormVEx. J. Atmos. Oceanic Technol., 30, 23362351, https://doi.org/10.1175/JTECH-D-13-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. L., C. J. Chiu, R. J. Hogan, D. Moisseev, and S. Kneifel, 2018: Retrievals of riming and snow density from vertically pointing Doppler radars. J. Geophys. Res. Atmos., 123, 13 80713 834, https://doi.org/10.1029/2018JD028603

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1991: Theoretical study of radar polarization parameters obtained from cirrus clouds. J. Atmos. Sci., 48, 10621070, https://doi.org/10.1175/1520-0469(1991)048<1062:TSORPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1993: Possibilities of cirrus particle sizing from dual-frequency radar measurements. J. Geophys. Res., 98, 20 67520 683, https://doi.org/10.1029/93JD02335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1998: A dual-wavelength radar method to measure snowfall rate. J. Appl. Meteor., 37, 15101521, https://doi.org/10.1175/1520-0450(1998)037<1510:ADWRMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2019: Comparative evaluation of snowfall retrievals from the CloudSat W-band radar using ground-based weather radars. J. Atmos. Oceanic Technol., 36, 101111, https://doi.org/10.1175/JTECH-D-18-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and Battaglia, 2009: Influence of multiple scattering on CloudSat measurements in snow: A model study. Geophys. Res. Lett., 36, L12806, https://doi.org/10.1029/2009GL038704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and A. J. Heymsfield, 2017: Empirical relations between size parameters of ice hydrometeor populations and radar reflectivity. J Appl. Meteor. Climatol., 56, 24792488, https://doi.org/10.1175/JAMC-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and D. D. Turner, 2018: Retrieving mean temperature of atmospheric liquid water layers using microwave radiometer measurements. J. Atmos. Oceanic Technol., 35, 10911102, https://doi.org/10.1175/JTECH-D-17-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. J. Heymsfield, and Z. Wang, 2005: Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L13816, https://doi.org/10.1029/2005GL023210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., G. G. Mace, R. Marchand, M. D. Shupe, A. G. Hallar, and I. B. McCubbin, 2012: Observations of ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode. J. Atmos. Oceanic Technol., 29, 9891008, https://doi.org/10.1175/JTECH-D-11-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., C. G. Schmitt, M. Maahn, and G. de Boer, 2017: Atmospheric ice particle shape estimates from polarimetric radar measurements and in situ observations. J. Atmos. Oceanic Technol., 34, 25692587, https://doi.org/10.1175/JTECH-D-17-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A., B. Isom, D. Nelson, I. Lindenmaier, J. Hardin, K. Johnson and N. Bharadwaj, 2016a: Ka-Band Scanning ARM Cloud Radar (KASACRVPTHRC), ARM Mobile Facility (OLI) Oliktok Point, Alaska; AMF3 (M1). ARM Data Center, accessed 21 October 2018, https://doi.org/10.5439/1224840.

    • Crossref
    • Export Citation
  • Matthews, A., B. Isom, D. Nelson, I. Lindenmaier, J. Hardin, K. Johnson and N. Bharadwaj, 2016b: W-band Scanning ARM Cloud Radar (WSACRVPTHRC). ARM Mobile Facility (OLI) Oliktok Point, Alaska; AMF3 (M1). ARM Data Center, accessed 21 October 2018, https://doi.org/10.5439/1224850.

    • Crossref
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2011: Indirect and Semi-Direct Aerosol Campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, https://doi.org/10.1175/2010BAMS2935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., 2017: Parameters of cloud ice particles retrieved from radar data. J. Atmos. Oceanic Technol., 34, 717728, https://doi.org/10.1175/JTECH-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and L. D. Travis, 1994: T-matrix computations of light scattering by larger spheroidal particles. Opt. Commun., 109, 1621, https://doi.org/10.1016/0030-4018(94)90731-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mosimann, L., 1995: An improved method for determining the degree of snow crystal riming by vertical Doppler radar. Atmos. Res., 37, 305323, https://doi.org/10.1016/0169-8095(94)00050-N.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., S. Y. Matrosov, R. A. Kropfli, and B. W. Bartram, 2002: Evaluation of a 45° slant quasi-linear radar polarization state for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321, https://doi.org/10.1175/1520-0426-19.3.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2018: Bulk-density representations of branched planar ice crystals: Errors in the polarimetric radar variables. J Appl. Meteor. Climatol., 57, 333346, https://doi.org/10.1175/JAMC-D-17-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., J. Holmgren, and D. K. Perovich, 2002: Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and spatial variability. J. Geophys. Res., 107, 8047, https://doi.org/10.1029/2000JC000400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, J. M., and F. Fabry, 2018: Contrasting polarimetric observations of stratiform riming and nonriming events. J Appl. Meteor. Climatol., 57, 457476, https://doi.org/10.1175/JAMC-D-16-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Lerber, A., D. Moisseev, L. F. Bliven, W. Petersen, A. Harri, and V. Chandrasekar, 2017: Microphysical properties of snow and their link to Ze–S relations during BAECC 2014. J. Appl. Meteor. Climatol., 56, 15611582, https://doi.org/10.1175/JAMC-D-16-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wipf, S., and C. Rixen, 2010: A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res., 29, 95109, https://doi.org/10.1111/j.1751-8369.2010.00153.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2022 1186 92
PDF Downloads 786 84 1