Sensitivity of Simulated GMI Brightness Temperatures to Variations in Particle Size Distributions in a Severe Hailstorm

Kenneth D. Leppert II University of Louisiana at Monroe, Monroe, Louisiana

Search for other papers by Kenneth D. Leppert II in
Current site
Google Scholar
PubMed
Close
and
Daniel J. Cecil NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Daniel J. Cecil in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global Precipitation Measurement (GPM) Microwave Imager (GMI) brightness temperatures (BTs) were simulated over a case of severe convection in Texas using ground-based S-band radar and the Atmospheric Radiative Transfer Simulator. The median particle diameter Do of a normalized gamma distribution was varied for different hydrometeor types under the constraint of fixed radar reflectivity to better understand how simulated GMI BTs respond to changing particle size distribution parameters. In addition, simulations were conducted to assess how low BTs may be expected to reach from realistic (although extreme) particle sizes or concentrations. Results indicate that increasing Do for cloud ice, graupel, and/or hail leads to warmer BTs (i.e., weaker scattering signature) at various frequencies. Channels at 166.0 and 183.31 ± 7 GHz are most sensitive to changing Do of cloud ice, channels at ≥89.0 GHz are most sensitive to changing Do of graupel, and at 18.7 and 36.5 GHz they show the greatest sensitivity to hail Do. Simulations contrasting BTs above high concentrations of small (0.5-cm diameter) and low concentrations of large (20-cm diameter) hailstones distributed evenly across a satellite pixel showed much greater scattering using the higher concentration of smaller hailstones with BTs as low as ~110, ~33, ~22, ~46, ~100, and ~106 K at 10.65, 18.7, 36.5, 89.0, 166.0, and 183.31 ± 7 GHz, respectively. These results suggest that number concentration is more important for scattering than particle size given a constant S-band radar reflectivity.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth Leppert II, leppert@ulm.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

Global Precipitation Measurement (GPM) Microwave Imager (GMI) brightness temperatures (BTs) were simulated over a case of severe convection in Texas using ground-based S-band radar and the Atmospheric Radiative Transfer Simulator. The median particle diameter Do of a normalized gamma distribution was varied for different hydrometeor types under the constraint of fixed radar reflectivity to better understand how simulated GMI BTs respond to changing particle size distribution parameters. In addition, simulations were conducted to assess how low BTs may be expected to reach from realistic (although extreme) particle sizes or concentrations. Results indicate that increasing Do for cloud ice, graupel, and/or hail leads to warmer BTs (i.e., weaker scattering signature) at various frequencies. Channels at 166.0 and 183.31 ± 7 GHz are most sensitive to changing Do of cloud ice, channels at ≥89.0 GHz are most sensitive to changing Do of graupel, and at 18.7 and 36.5 GHz they show the greatest sensitivity to hail Do. Simulations contrasting BTs above high concentrations of small (0.5-cm diameter) and low concentrations of large (20-cm diameter) hailstones distributed evenly across a satellite pixel showed much greater scattering using the higher concentration of smaller hailstones with BTs as low as ~110, ~33, ~22, ~46, ~100, and ~106 K at 10.65, 18.7, 36.5, 89.0, 166.0, and 183.31 ± 7 GHz, respectively. These results suggest that number concentration is more important for scattering than particle size given a constant S-band radar reflectivity.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth Leppert II, leppert@ulm.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save
  • Adler, R. F., H.-Y. M. Yeh, N. Prasad, W.-K. Tao, and J. Simpson, 1991: Microwave simulations of a tropical rainfall system with a three-dimensional cloud model. J. Appl. Meteor., 30, 924953, https://doi.org/10.1175/1520-0450-30.7.924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, Y. Kaheil, A. H. Sobel, C. Lepore, S. Nong, and A. Muehlbauer, 2017: An extreme value model for U.S. hail size. Mon. Wea. Rev., 145, 45014519, https://doi.org/10.1175/MWR-D-17-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2019: Graupel. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Graupel.

  • Bennartz, R., and G. W. Petty, 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor., 40, 345364, https://doi.org/10.1175/1520-0450(2001)040<0345:TSOMRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and P. Bauer, 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38, 8075, https://doi.org/10.1029/2002RS002626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehler, S. A., J. Mendrok, P. Eriksson, A. Perrin, R. Larson, and O. Lemke, 2018: ARTS, the Atmospheric Radiative Transfer Simulator–version 2.2, the planetary toolbox edition. Geosci. Model Dev., 11, 15371556, https://doi.org/10.5194/gmd-11-1537-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casella, D., A. Mugnai, P. Sano, and M. Formenton, 2008: Microwave single-scattering properties of randomly oriented soft-ice hydrometeors. Adv. Geosci., 17, 7985, https://doi.org/10.5194/adgeo-17-79-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2009: Passive microwave brightness temperatures as proxies for hailstorms. J. Appl. Meteor. Climatol., 48, 12811286, https://doi.org/10.1175/2009JAMC2125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and T. Chronis, 2018: Polarization-corrected temperatures for 10-, 19-, 37-, and 89-GHz passive microwave frequencies. J. Appl. Meteor. Climatol., 57, 22492265, https://doi.org/10.1175/JAMC-D-18-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, https://doi.org/10.1175/2009JTECHA1208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52, 21622186, https://doi.org/10.1175/JAMC-D-12-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eriksson, P., S. A. Buehler, C. P. Davis, C. Emde, and O. Lemke, 2011: ARTS, the Atmospheric Radiative Transfer Simulator, version 2. J. Quant. Spectrosc. Radiat. Transfer, 112, 15511558, https://doi.org/10.1016/j.jqsrt.2011.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and G. F. Marks, 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12, 755770, https://doi.org/10.1175/1520-0426(1995)012<0755:TDOSRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., J. Beauchamp, D. J. Cecil, and G. M. Heymsfield, 2015: A prototype hail detection algorithm and hail climatology developed with the Advanced Microwave Sounding Unit (AMSU). Atmos. Res., 163, 2435, https://doi.org/10.1016/j.atmosres.2014.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galligani, V. S., C. Prigent, E. Defer, C. Jimenez, and P. Eriksson, 2013: The impact of the melting layer on the passive microwave cloud scattering signal observed from satellites: A study using TRMM microwave passive and active measurements. J. Geophys. Res. Atmos., 118, 56675678, https://doi.org/10.1002/JGRD.50431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. L. Kelley, and S. F. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Hogan, R. J., R. Honeyager, J. Tyynela, and S. Kneifel, 2017: Calculating the millimetre-wave scattering phase function of snowflakes using the self-similar Rayleigh-Gans approximation. Quart. J. Roy. Meteor. Soc., 143, 834844, https://doi.org/10.1002/qj.2968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, G., G. Heygster, J. Miao, and K. Kunzi, 2005: Sensitivity of microwave brightness temperatures to hydrometeors in a tropical deep convective cloud system at 89–190 GHz. Radio Sci., 40, RS4003, https://doi.org/10.1029/2004RS003129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., K. Friedrich, B. C. Motta, W. Deierling, G. T. Stano, and N. N. Rydell, 2016: Colorado plowable hailstorms: Synoptic weather, radar, and lightning characteristics. Wea. Forecasting, 31, 663693, https://doi.org/10.1175/WAF-D-15-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M.-J., M. S. Kulie, C. O’Dell, and R. Bennartz, 2007: Scattering of ice particles at microwave frequencies: A physically based parameterization. J. Appl. Meteor. Climatol., 46, 615633, https://doi.org/10.1175/JAM2483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Weng, 2010: Uncertainties in microwave properties of frozen precipitation: Implications for remote sensing and data assimilation. J. Atmos. Sci., 67, 34713487, https://doi.org/10.1175/2010JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., II, and D. J. Cecil, 2015: Signatures of hydrometeor species from airborne passive microwave data for frequencies 10–183 GHz. J. Appl. Meteor. Climatol., 54, 13131334, https://doi.org/10.1175/JAMC-D-14-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marra, A. C., and Coauthors, 2017: Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of the GPM Core Observatory. Atmos. Res., 192, 7290, https://doi.org/10.1016/j.atmosres.2017.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGaughey, G., E. J. Zipser, R. W. Spencer, and R. E. Hood, 1996: High-resolution passive microwave observations of convective systems over the tropical Pacific Ocean. J. Appl. Meteor., 35, 19211947, https://doi.org/10.1175/1520-0450(1996)035<1921:HRPMOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meirold-Mautner, I., C. Prigent, E. Defer, J. R. Pardo, J.-P. Chaboureau, J.-P. Pinty, M. Mech, and S. Crewell, 2007: Radiative transfer simulations using mesoscale cloud model outputs: Comparisons with passive microwave and infrared satellite observations for midlatitudes. J. Atmos. Sci., 64, 15501568, https://doi.org/10.1175/JAS3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 1991: Extinction and polarization of transmitted light by partially aligned nonspherical grains. Astrophys. J., 367, 561574, https://doi.org/10.1086/169652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, https://doi.org/10.1364/AO.39.001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309324, https://doi.org/10.1016/S0022-4073(98)00008-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mroz, K., A. Battaglia, T. J. Lang, D. J. Cecil, S. Tanelli, and F. Tridon, 2017: Hail-detection algorithm for the GPM Core Observatory satellite sensors. J. Appl. Meteor. Climatol., 56, 19391957, https://doi.org/10.1175/JAMC-D-16-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2016: Precipitation Processing System TRMM/GPM Public Data Archive, version 5. NASA Goddard Space Flight Center, accessed 5 August 2019, https://pps.gsfc.nasa.gov/ppsindex.html.

  • National Centers for Environmental Information, 2015: NEXRAD Data Archive, Inventory and Access, version 6. NOAA, accessed 5 August 2019, https://www.ncdc.noaa.gov/nexradinv/.

  • National Weather Association, 2010: New national hail records set in South Dakota. National Weather Association Newsletter, No. 10-7, National Weather Association, Raleigh, NC, 1, http://nwafiles.nwas.org/newsletters/pdf/news_jul2010.pdf.

  • Ni, X., C. Liu, D. J. Cecil, and Q. Zhang, 2017: On the detection of hail using satellite passive microwave radiometers and precipitation radar. J. Appl. Meteor. Climatol., 56, 26932709, https://doi.org/10.1175/JAMC-D-17-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and H. Masunaga, 2018: GPM combined radar-radiometer precipitation Algorithm Theoretical Basis Document (version 2). EORC/JAXA, 58 pp., http://www.eorc.jaxa.jp/GPM/doc/algorithm/GPM2011CombinedL2ATBD.pdf.

  • Olson, W. S., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part II: Initial testing using radar, radiometer and in situ observations. J. Appl. Meteor. Climatol., 55, 709722, https://doi.org/10.1175/JAMC-D-15-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., H. J. Cooper, X. Xiang, A. Mugnai, and G. J. Tripoli, 1992: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness temperature properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 31, 506531, https://doi.org/10.1175/1520-0450(1992)031<0506:FFSPPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and D. A. Santek, 1985: Measuring the global distribution of intense convection over land with passive microwave radiometry. J. Climate Appl. Meteor., 24, 860864, https://doi.org/10.1175/1520-0450(1985)024<0860:MTGDOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., W. S. Olson, W. Rongzhang, D. W. Martin, J. A. Weinman, and D. A. Santek, 1983: Heavy thunderstorms observed over land by the Nimbus 7 scanning multichannel microwave radiometer. J. Climate Appl. Meteor., 22, 10411046, https://doi.org/10.1175/1520-0450(1983)022<1041:HTOOLB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm Prediction Center, 2015: Storm Reports. NOAA, accessed 5 August 2019, https://www.spc.noaa.gov/climo/reports/150526_rpts.html.

  • Tang, G., P. Yang, P. G. Stegmann, R. L. Panetta, L. Tsang, and B. Johnson, 2017: Effect of particle shape, density, and inhomogeneity on the microwave optical properties of graupel and hailstones. IEEE Trans. Geosci. Remote Sens., 55, 63666378, https://doi.org/10.1109/TGRS.2017.2726994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., J. Turk, and V. N. Bringi, 1991: Ice water path estimation and characterization using passive microwave radiometry. J. Appl. Meteor., 30, 14071421, https://doi.org/10.1175/1520-0450(1991)030<1407:IWPEAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., A. T. C. Chang, M. S. V. Rao, E. B. Rodgers, and J. S. Theon, 1977: A satellite technique for quantitatively mapping rainfall rates over the oceans. J. Appl. Meteor., 16, 551560, https://doi.org/10.1175/1520-0450(1977)016<0551:ASTFQM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., A. T. C. Chang, and L. S. Chiu, 1991: Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. J. Atmos. Oceanic Technol., 8, 118136, https://doi.org/10.1175/1520-0426(1991)008<0118:ROMRIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, R. Ferraro, and S. Rudlosky, 2017: Quantifying the snowfall detection performance of the GPM Microwave Imager channels over land. J. Hydrometeor., 18, 729751, https://doi.org/10.1175/JHM-D-16-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3143 2618 20
PDF Downloads 719 92 10