Observed Synergies between Urban Heat Islands and Heat Waves and Their Controlling Factors in Shanghai, China

Xiangyu Ao Shanghai Meteorological Service, and Shanghai Key Laboratory of Meteorology and Health, Shanghai, China

Search for other papers by Xiangyu Ao in
Current site
Google Scholar
PubMed
Close
,
Liang Wang Department of Earth and Environment, Boston University, Boston, Massachusetts

Search for other papers by Liang Wang in
Current site
Google Scholar
PubMed
Close
,
Xing Zhi Shanghai Meteorological Service, Shanghai, China

Search for other papers by Xing Zhi in
Current site
Google Scholar
PubMed
Close
,
Wen Gu Shanghai Meteorological Service, Shanghai, China

Search for other papers by Wen Gu in
Current site
Google Scholar
PubMed
Close
,
Hequn Yang Shanghai Meteorological Service, Shanghai, China

Search for other papers by Hequn Yang in
Current site
Google Scholar
PubMed
Close
, and
Dan Li Department of Earth and Environment, Boston University, Boston, Massachusetts

Search for other papers by Dan Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5978-5381
Restricted access

Abstract

There is an ongoing debate as to whether the UHI intensity (UHII) is enhanced or dampened under heat waves (HWs). Using a comprehensive dataset including continuous surface energy flux data for three summers (2016–18) and automated weather station data for six summers (2013–18) in Shanghai, China, we find synergies between UHIs and HWs when either a coastal or an inland suburban site is used as the reference site. We further find that during HWs, the increase of net radiation at the urban site is larger than that at the suburban site. More importantly, the latent heat flux is slightly reduced at the urban site but is slightly increased at the suburban site, while the increase of the sensible heat flux is larger at the urban site. This change of surface energy partitioning, together with the increased anthropogenic heat flux during HWs, exacerbates the UHII. The change of surface energy partitioning is consistent with the observed decrease of relative humidity ratio between urban and suburban areas. The UHII is stronger when the regional wind speed is reduced and under sea breeze, both of which are found to be associated with HWs in our study region. This study suggests that there are multiple factors controlling the interactions between UHIs and HWs, which may explain why synergies between UHIs and HWs are only found in certain metropolitan regions and/or under certain HW events.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dan Li, lidan@bu.edu

Abstract

There is an ongoing debate as to whether the UHI intensity (UHII) is enhanced or dampened under heat waves (HWs). Using a comprehensive dataset including continuous surface energy flux data for three summers (2016–18) and automated weather station data for six summers (2013–18) in Shanghai, China, we find synergies between UHIs and HWs when either a coastal or an inland suburban site is used as the reference site. We further find that during HWs, the increase of net radiation at the urban site is larger than that at the suburban site. More importantly, the latent heat flux is slightly reduced at the urban site but is slightly increased at the suburban site, while the increase of the sensible heat flux is larger at the urban site. This change of surface energy partitioning, together with the increased anthropogenic heat flux during HWs, exacerbates the UHII. The change of surface energy partitioning is consistent with the observed decrease of relative humidity ratio between urban and suburban areas. The UHII is stronger when the regional wind speed is reduced and under sea breeze, both of which are found to be associated with HWs in our study region. This study suggests that there are multiple factors controlling the interactions between UHIs and HWs, which may explain why synergies between UHIs and HWs are only found in certain metropolitan regions and/or under certain HW events.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dan Li, lidan@bu.edu
Save
  • Allen, L., F. Lindberg, and C. S. B. Grimmond, 2011: Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol., 31, 19902005, https://doi.org/10.1002/joc.2210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. G., and M. L. Bell, 2009: Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology, 20, 205213, https://doi.org/10.1097/EDE.0b013e318190ee08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. G., and M. L. Bell, 2011: Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect., 119, 210218, https://doi.org/10.1289/ehp.1002313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., and Coauthors, 2016a: Heat, water and carbon exchanges in the tall megacity of Shanghai: Challenges and results. Int. J. Climatol., 36, 46084624, https://doi.org/10.1002/joc.4657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., C. S. B. Grimmond, D. Liu, Z. Han, P. Hu, Y. Wang, X. Zhen, and J. Tan, 2016b: Radiation fluxes in a business district of Shanghai, China. J. Appl. Meteor. Climatol., 55, 24512468, https://doi.org/10.1175/JAMC-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., and Coauthors, 2018: Evaluation of the Surface Urban Energy and Water balance Scheme (SUEWS) at a dense urban site in Shanghai: Sensitivity to anthropogenic heat and irrigation. J. Hydrometeor., 19, 19832005, https://doi.org/10.1175/JHM-D-18-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, https://doi.org/10.1002/joc.859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., H. G. Basara, B. G. Illston, and K. C. Crawford, 2010: The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv. Meteor., 2010, 185194, https://doi.org/10.1155/2010/230365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, M., P. Rosado, Z. Lin, R. Levinson, and D. Millstein, 2015: Cool roofs in Guangzhou, China: Outdoor air temperature reductions during heat waves and typical summer conditions. Environ. Sci. Technol., 49, 14 672, https://doi.org/10.1021/acs.est.5b04886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., S. Miao, M. Tewari, J. W. Bao, and H. Kusaka, 2011: A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J. Geophys. Res., 116, D12105, https://doi.org/10.1029/2010JD015533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, W. T., F. Salamanca, M. Georgescu, A. Mahalov, J. M. Milne, and B. L. Ruddell, 2014: A multi-method and multi-scale approach for estimating city-wide anthropogenic heat fluxes. Atmos. Environ., 99, 6476, https://doi.org/10.1016/j.atmosenv.2014.09.053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christen, A., and Coauthors, 2011: Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements. Atmos. Environ., 45, 60576069, https://doi.org/10.1016/j.atmosenv.2011.07.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, L., and J. Shi, 2012: Urbanization and its environmental effects in Shanghai, China. Urban Climate, 2, 115, https://doi.org/10.1016/j.uclim.2012.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depietri, Y., F. G. Renaud, and G. Kallis, 2012: Heat waves and floods in urban areas: a policy-oriented review of ecosystem services. Sustainability Sci., 7, 95107, https://doi.org/10.1007/s11625-011-0142-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., M. Baber, A. Boucher, S. Dibari, R. Hubler, B. Stimac-Spalding, and T. Winesett, 2018: Temporal variability of the Charlotte (sub)-urban heat island. J. Appl. Meteor. Climatol., 57, 81102, https://doi.org/10.1175/JAMC-D-17-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., 2004: Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet. J. Meteor. Soc. Japan, 82, 10191034, https://doi.org/10.2151/jmsj.2004.1019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foken, T., 2008: The energy balance closure problem: An overview. Ecol. Appl., 18, 13511367, https://doi.org/10.1890/06-0922.1.

  • Founda, D., and M. Santamouris, 2017: Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Sci. Rep., 7, 10973, https://doi.org/10.1038/s41598-017-11407-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Founda, D., F. Pierros, M. Petrakis, and C. Zerefos, 2015: Inter-decadal variations and trends of the urban heat island in Athens (Greece) and its response to heat waves. Atmos. Res., 161–162, 113, https://doi.org/10.1016/j.atmosres.2015.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabey, A., C. S. B. Grimmond, and I. Capel-Timms, 2018: Anthropogenic heat flux: Advisable spatial resolutions when input data are scarce. Theor. Appl. Climatol., https://doi.org/10.1007/s00704-018-2367-y

    • Search Google Scholar
    • Export Citation
  • Gabriel, K. M., and W. R. Endlicher, 2011: Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ. Pollut., 159, 20442050, https://doi.org/10.1016/j.envpol.2011.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geddes, J. A., J. G. Murphy, J. Schurman, A. Petroff, and S. C. Thomas, 2014: Net ecosystem exchange of an uneven-aged managed forest in central Ontario, and the impact of a spring heat wave event. Agric. For. Meteor., 198–199, 105115, https://doi.org/10.1016/j.agrformet.2014.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgescu, M., P. E. Morefield, B. G. Bierwagen, and C. P. Weaver, 2014: Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA, 111, 29092914, https://doi.org/10.1073/pnas.1322280111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 2007: Urbanization and global environmental change: Local effects of urban warming. Geogr. J., 173, 8388, https://doi.org/10.1111/j.1475-4959.2007.232_3.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grumm, R. H., 2011: The central European and Russian heat event of July–August 2010. Bull. Amer. Meteor. Soc., 92, 12851296, https://doi.org/10.1175/2011BAMS3174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haeger-Eugensson, M., and B. Holmer, 1999: Advection caused by the urban heat island circulation as a regulating factor on the nocturnal urban heat island. Int. J. Climatol., 19, 975988, https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<975::AID-JOC399>3.0.CO;2-J.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, A. Lin, B. Wu, D. Gu, C. Li, and B. Zheng, 2015: Enhanced or weakened western North Pacific subtropical high under global warming? Sci. Rep., 5, 16 771, https://doi.org/10.1038/srep16771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, J., V. Masson, and L. Gimeno, 2010: Scaling the daytime urban heat island and urban-breeze circulation. J. Appl. Meteor. Climatol., 49, 889901, https://doi.org/10.1175/2009JAMC2195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffert, M. I., and Coauthors, 2002: Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science, 298, 981987, https://doi.org/10.1126/science.1072357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., and Coauthors, 2019: Evidence for urban–rural disparity in temperature–mortality relationships in Zhejiang Province, China. Environ. Health Perspect., 127, 037001, https://doi.org/10.1289/EHP3556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iamarino, M., S. Beevers, and C. S. B. Grimmond, 2012: High-resolution (space, time) anthropogenic heat emissions: London 1970–2025. Int. J. Climatol., 32, 17541767, https://doi.org/10.1002/joc.2390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichinose, T., K. Shimodozono, and K. Hanaki, 1999: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ., 33, 38973909, https://doi.org/10.1016/S1352-2310(99)00132-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., J. S. Greene, D. M. Mills, A. D. Perrin, J. P. Samenow, and C. Jean-Claude, 2008: Analog European heat waves for U.S. cities to analyze impacts on heat-related mortality. Bull. Amer. Meteor. Soc., 89, 7585, https://doi.org/10.1175/BAMS-89-1-75.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531, https://doi.org/10.1038/nature01675.

  • Kim, H. W., and D. K. Lee, 2006: An observational study of mesoscale convective systems with heavy rainfall over the Korean Peninsula. Wea. Forecasting, 21, 125148, https://doi.org/10.1175/WAF912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., F. R. Zeng, and A. T. Wittenberg, 2013: The extreme March-May 2012 warm anomaly over the eastern United States: Global context and multi-model trend analysis [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 94 (9), S13S17, https://doi.org/10.1175/BAMS-D-13-00085.1.

    • Search Google Scholar
    • Export Citation
  • Kormann, R., and F. X. Meixner, 2001: An analytical footprint model for non-neutral stratification. Bound.-Layer Meteor., 99, 207224, https://doi.org/10.1023/A:1018991015119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2012: A model study of heat waves over North America: Meteorological aspects and projections for the 21st century. J. Climate, 25, 47614784, https://doi.org/10.1175/JCLI-D-11-00575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and J. J. Ploshay, 2013: Model projections of the changes in atmospheric circulation and surface climate over North America, North Atlantic and Europe in the 21st century. J. Climate, 26, 96039620, https://doi.org/10.1175/JCLI-D-13-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. H., C. K. Song, J. J. Baik, and S. U. Park, 2009: Estimation of anthropogenic heat emission in the Gyeong-In region of Korea. Theor. Appl. Climatol., 96, 291303, https://doi.org/10.1007/s00704-008-0040-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., and E. Bou-Zeid, 2013: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteor. Climatol., 52, 20512064, https://doi.org/10.1175/JAMC-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, and M. Oppenheimer, 2014: The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ. Res. Lett., 9, 055002, https://doi.org/10.1088/1748-9326/9/5/055002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., T. Sun, M. Liu, L. Yang, L. Wang, and Z. Gao, 2015: Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environ. Res. Lett., 10, 054009, https://doi.org/10.1088/1748-9326/10/5/054009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., T. Sun, M. Liu, L. Wang, and Z. Gao, 2016: Changes in wind speed under heat waves enhance urban heat Islands in the Beijing metropolitan area. J. Appl. Meteor. Climatol., 55, 23692375, https://doi.org/10.1175/JAMC-D-16-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, M. Ting, and Y. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830834, https://doi.org/10.1038/ngeo1590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindberg, F., C. S. B. Grimmond, N. Yogeswaran, K. Kotthaus, and L. Allen, 2013: Impact of city changes and weather on anthropogenic heat flux in Europe 1995–2015. Urban Climate, 4, 115, https://doi.org/10.1016/j.uclim.2013.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, D., and Coauthors, 2018: A new model to downscale urban and rural surface and air temperatures evaluated in Shanghai, China. J. Appl. Meteor. Climatol., 57, 22672283, https://doi.org/10.1175/JAMC-D-17-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and L. Cao, 2013: The relationship between power load and meteorological factors with refined power load forecast in Shanghai (in Chinese). J. Appl. Meteor. Sci., 24, 455463.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., X. Fang, Y. Xu, S. Zhang, and Q. Luan, 2018: Assessment of surface urban heat island across China’s three main urban agglomerations. Theor. Appl. Climatol., 133, 473488, https://doi.org/10.1007/s00704-017-2197-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, https://doi.org/10.1175/JCLI-D-11-00709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., T. Zhou, D. Stone, O. Angélil, and H. Shiogama, 2017: Attribution of the July–August 2013 heat event in Central and Eastern China to anthropogenic greenhouse gas emissions. Environ. Res. Lett., 12, 054020, https://doi.org/10.1088/1748-9326/aa69d2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumura, S., S. Sugimoto, and T. Sato, 2015: Recent intensification of the western Pacific subtropical high associated with the East Asian summer monsoon. J. Climate, 28, 28732883, https://doi.org/10.1175/JCLI-D-14-00569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meir, T., P. M. Orton, J. Pullen, T. Holt, W. T. Thompson, and M. F. Arend, 2013: Forecasting the New York City urban heat island and sea breeze during extreme heat events. Wea. Forecasting, 28, 14601477, https://doi.org/10.1175/WAF-D-13-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S., F. Chen, M. A. Lemone, M. Tewari, Q. Li, and Y. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484501, https://doi.org/10.1175/2008JAMC1909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N. L., K. Hayhoe, J. Jin, and M. Auffhammer, 2008: Climate, extreme heat, and electricity demand in California. J. Appl. Meteor. Climatol., 47, 18341844, https://doi.org/10.1175/2007JAMC1480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mora, C., and Coauthors, 2017: Global risk of deadly heat. Nat. Climate Change, 7, 501506, https://doi.org/10.1038/nclimate3322.

  • Oke, T. R., 1982: The energetic basis of the urban heat-island. Quart. J. Roy. Meteor. Soc., 108, 124, https://doi.org/10.1002/qj.49710845502.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 2013: Monitoring and understanding changes in heat waves, cold waves, floods and droughts in the United States: State of knowledge. Bull. Amer. Meteor. Soc., 94, 821834, https://doi.org/10.1175/BAMS-D-12-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramamurthy, P., and E. Bou-Zeid, 2017: Heatwaves and urban heat islands: A comparative analysis of multiple cities. J. Geophys. Res. Atmos., 122, 168178, https://doi.org/10.1002/2016JD025357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramamurthy, P., D. Li, and E. Bou-Zeid, 2017: High-resolution simulation of heatwave events in New York City. Theor. Appl. Climatol., 128, 89102, https://doi.org/10.1007/s00704-015-1703-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, P. J., 2001: On the definition of a heat wave. J. Appl. Meteor., 40, 762775, https://doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, M., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126, 941990, https://doi.org/10.1002/qj.49712656409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, S., and Coauthors, 2015: Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos., 119, 12 50012 512, https://doi.org/10.1002/2014JD022098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., 2011: A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol., 31, 189199, https://doi.org/10.1002/joc.2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., and L. Lu, 2004: A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ., 38, 27372748, https://doi.org/10.1016/j.atmosenv.2004.01.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., M. Georgescu, J. M. Milne, and M. A. Hart, 2015: Development of a national anthropogenic heating database with an extrapolation for international cities. Atmos. Environ., 118, 718, https://doi.org/10.1016/j.atmosenv.2015.07.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schatz, J., and C. J. Kucharik, 2015: Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environ. Res. Lett., 10, 094024, https://doi.org/10.1088/1748-9326/10/9/094024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, A. A., D. W. Waugh, and B. F. Zaitchik, 2018: Reduced urban heat island intensity under warmer conditions. Environ. Res. Lett., 13, 064003, https://doi.org/10.1088/1748-9326/aabd6c.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, T., S. Kotthaus, D. Li, H. C. Ward, Z. Gao, G. Ni, and C. S. B. Grimmond, 2017: Attribution and mitigation of heat wave-induced urban heat storage change. Environ. Res. Lett., 12, 114007, https://doi.org/10.1088/1748-9326/aa922a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J. G., and Coauthors, 2010: The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeor., 54, 7584, https://doi.org/10.1007/s00484-009-0256-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., J. Yang, H. Kusaka, F. Salamanca, W. Campbell, and L. Treinish, 2019: Interaction of urban heat islands and heat waves under current and future climate conditions and their mitigation using green and cool roofs in New York City and Phoenix, Arizona. Environ. Res. Lett., 14, 034002, https://doi.org/10.1088/1748-9326/aaf431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wreford, A., and W. Neiladger, 2010: Adaptation in agriculture: Historic effects of heat waves and droughts on UK agriculture. Int. J. Agric. Sustainability, 8, 278289, https://doi.org/10.3763/ijas.2010.0482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., K. Tu, Z. Yan, and Y. Qi, 2016: The super-heat wave in eastern China during July–August 2013: A perspective of climate change. Int. J. Climatol., 36, 12911298, https://doi.org/10.1002/joc.4424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., and J. Wen, 2016: Multi-criteria satisfaction assessment of the spatial distribution of urban emergency shelters based on high-precision population estimation. Int. J. Disaster Risk Sci., 7, 413429, https://doi.org/10.1007/s13753-016-0111-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., A. K. Macalady, L. R. Bonneau, and R. B. Smith, 2006: Europe’s 2003 heat wave: A satellite view of impacts and land–atmosphere feedbacks. Int. J. Climatol., 26, 743769, https://doi.org/10.1002/joc.1280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., X. Lee, R. B. Smith, and K. Oleson, 2014: Strong contributions of local background climate to urban heat islands. Nature, 511, 216219, https://doi.org/10.1038/nature13462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., M. Oppenheimer, Q. Zhu, J. W. Baldwin, K. L. Ebi, E. Bou-Zeid, K. Guan, and X. Liu, 2018: Interactions between urban heat islands and heat waves. Environ. Res. Lett., 13, 034003, https://doi.org/10.1088/1748-9326/aa9f73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, W., D. Wang, D. Xie, and L. Yan, 2017: Dynamic characteristics of Shanghai’s population distribution using cell phone signaling data (in Chinese). Geogr. Res., 36, 972984, https://doi.org/10.11821/dlyj201705013.

    • Search Google Scholar
    • Export Citation
  • Zhou, D., S. Zhao, L. Zhang, G. Sun, and Y. Liu, 2015: The footprint of urban heat island effect in china. Sci. Rep., 5, 11160, https://doi.org/10.1038/srep11160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. E. Dickinson, Y. Tian, J. Fang, Q. Li, R. K. Kaufmann, C. J. Tucker, and R. B. Myneni, 2004: Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA, 101, 95409544, https://doi.org/10.1073/pnas.0400357101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and J. M. Shepherd, 2010: Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies. Nat. Hazards, 52, 639668, https://doi.org/10.1007/s11069-009-9406-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4015 2201 198
PDF Downloads 1386 253 41