• Andrieu, H., and J. D. Creutin, 1995: Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteor., 34, 225239, https://doi.org/10.1175/1520-0450(1995)034<0225:IOVPOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., A. V. R. Krishna Rao, and R. R. Kelkar, 1989: Large-scale precipitation and outgoing longwave radiation from INSAT-1B during the 1986 southwest monsoon season. J. Climate, 2, 619628, https://doi.org/10.1175/1520-0442(1989)002<0619:LSPAOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bliss, N. T., R. Bond, J. Kepner, H. Kim, and A. Reuther, 2006: Interactive grid computing at Lincoln laboratory. Lincoln Lab. J., 16, 165216.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 664 pp.

  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, https://doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., and Coauthors, 2018: Development of a statewide, multiuse surface and vertical profiling network: An overview of the New York state mesonet. 22nd Conf. on IOAS-AOLS, Austin, TX, Amer. Meteor. Soc., 7.6, https://ams.confex.com/ams/98Annual/webprogram/Paper333289.html.

  • Cho, J.-Y.-N., 2015: Revised Multifunction Phased Array Radar (MPAR) network siting analysis. MIT Lincoln Laboratory Project Rep. ATC-425, 84 pp., https://www.ll.mit.edu/sites/default/files/publication/doc/2018-05/Cho_2015_ATC-425.pdf.

  • Cho, J.-Y.-N., and J. M. Kurdzo, 2019: Weather radar network benefit model for tornadoes. J. Appl. Meteor. Climatol., 58, 971987, https://doi.org/10.1175/JAMC-D-18-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J.-Y.-N., and J. M. Kurdzo, 2020a: Weather radar network benefit model for flash flood casualty reduction. J. Appl. Meteor. Climatol., 59, 589604, https://doi.org/10.1175/JAMC-D-19-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J.-Y.-N., and J. M. Kurdzo, 2020b: Weather radar network benefit model for nontornadic thunderstorm wind casualty cost reduction. Wea. Climate Soc., 12, 789804, https://doi.org/10.1175/WCAS-D-20-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20, 752759, https://doi.org/10.1175/1520-0426(2003)20<752:LREITB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., S. M. Martinaitis, B. Kaney, J. Zhang, and K. Howard, 2016: MRMS QPE performance during the 2013/14 cool season. J. Hydrometeor., 17, 791810, https://doi.org/10.1175/JHM-D-15-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., J. Zhang, S. M. Martinaitis, Y. Qi, B. Kaney, and K. Howard, 2017: MRMS QPE performance east of the Rockies during the 2014 warm season. J. Hydrometeor., 18, 761775, https://doi.org/10.1175/JHM-D-16-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., L. Tang, Y. Wang, J. Zhang, A. Ryzhkov, P. Zhang, and K. W. Howard, 2018: MRMS precipitation estimates using specific attenuation. 32nd Conf. on Hydrology, Austin, TX, Amer. Meteor. Soc., 77, https://ams.confex.com/ams/98Annual/webprogram/Paper335167.html.

  • Cocks, S. B., and Coauthors, 2019: A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part II: Performance verification and case study analysis. J. Hydrometeor., 20, 9991014, https://doi.org/10.1175/JHM-D-18-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delbert, W., C. Haonan, V. Chandrasekar, C. Robert, C. Carroll, R. David, M. Sergey, and Z. Yu, 2017: Evaluation of multisensor quantitative precipitation estimation in Russian River Basin. J. Hydrol. Eng., 22, E5016002, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001422.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., and T. Fehr, 2003: Relationship between precipitation rates at the ground and aloft—A modeling study. J. Appl. Meteor., 42, 12851301, https://doi.org/10.1175/1520-0450(2003)042<1285:RBPRAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Dover Publications, 481 pp.

  • Doviak, R. J., V. Bringi, A. Ryzhkov, A. Zahrai, and D. Zrnić, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278, https://doi.org/10.1175/1520-0426(2000)017<0257:CFPUTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. E., and E. R. Ducot, 2006: Corridor integrated weather system. Lincoln Lab. J., 16, 5980.

  • Fan, R. E., P. H. Chen, and C. J. Lin, 2005: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res., 6, 18891918.

    • Search Google Scholar
    • Export Citation
  • Gesch, D. B., K. L. Verdin, and S. K. Greenlee, 1999: New land surface digital elevation model covers the Earth. Eos, Trans. Amer. Geophys. Union, 80, 6970, https://doi.org/10.1029/99EO00050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2005: Calibration of dual-polarization radar in the presence of partial beam blockage. J. Atmos. Oceanic Technol., 22, 11561166, https://doi.org/10.1175/JTECH1766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., R. A. Maddox, K. W. Howard, and D. W. Burgess, 2002: An exploratory multisensor technique for quantitative estimation of stratiform rainfall. J. Hydrometeor., 3, 166180, https://doi.org/10.1175/1525-7541(2002)003<0166:AEMTFQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and Coauthors, 2017: The FLASH project: Improving the tools for flash flood monitoring and prediction across the United States. Bull. Amer. Meteor. Soc., 98, 361372, https://doi.org/10.1175/BAMS-D-15-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., W. F. Krajewski, and A. Kruger, 2001: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6, 159166, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(159).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2016: Extreme precipitation in models: An evaluation. Wea. Forecasting, 31, 18531879, https://doi.org/10.1175/WAF-D-16-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hershfield, D. M., 1961: Rainfall frequency atlas of the United States: For durations from 30 minutes to 24 hours and return periods from 1 to 100 years. U.S. Weather Bureau Tech. Paper 40, 65 pp., http://www.nws.noaa.gov/oh/hdsc/PF_documents/TechnicalPaper_No40.pdf.

  • Ho, C. H., and C. J. Lin, 2012: Large-scale linear support vector regression. J. Mach. Learn. Res., 13, 33233348.

  • Hong, Y., and J. J. Gourley, 2015: Radar Hydrology: Principles, Models, and Applications. CRC Press, 182 pp.

  • Huuskonen, A., E. Saltikoff, and I. Holleman, 2014: The operational weather radar network in Europe. Bull. Amer. Meteor. Soc., 95, 897907, https://doi.org/10.1175/BAMS-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., A. Gruber, C. R. Kondragunta, R. E. Livezey, and G. J. Huffman, 1998: A comparison of the NCEP–NCAR reanalysis precipitation and the GPCP rain gauge–satellite combined dataset with observational error considerations. J. Climate, 11, 29602979, https://doi.org/10.1175/1520-0442(1998)011<2960:ACOTNN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., H. Andrieu, G. Delrieu, and B. Boudevillain, 2010: Identification of vertical profiles of reflectivity for correction of volumetric radar data using rainfall classification. J. Appl. Meteor. Climatol., 49, 21672180, https://doi.org/10.1175/2010JAMC2369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., J. J. Gourley, Y. Hong, J. Zhang, S. Moazamigoodarzi, C. Langston, and A. Arthur, 2015: Probabilistic precipitation rate estimates with ground-based radar networks. Water Resour. Res., 51, 14221442, https://doi.org/10.1002/2014WR015672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., and R. D. Palmer, 2012: Objective optimization of weather radar networks for low-level coverage using a genetic algorithm. J. Atmos. Oceanic Technol., 29, 807821, https://doi.org/10.1175/JTECH-D-11-00076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., E. F. Clemons, J. Y. N. Cho, P. L. Heinselman, and N. Yussouf, 2018a: Quantification of radar QPE performance based on SENSR network design possibilities. IEEE Radar Conf. (RadarConf18), Oklahoma City, OK, IEEE, 169–174, https://ieeexplore.ieee.org/document/8378551.

    • Crossref
    • Export Citation
  • Kurdzo, J. M., E. R. Williams, D. J. Smalley, B. J. Bennett, D. C. Patterson, M. S. Veillette, and M. F. Donovan, 2018b: Polarimetric observations of chaff using the WSR-88D network. J. Appl. Meteor. Climatol., 57, 10631081, https://doi.org/10.1175/JAMC-D-17-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., Y. Wen, C. M. Kuster, J. Y. N. Cho, and T. J. Schuur, 2020: Investigating the impact of radar observation height on streamflow modeling: The 31 May 2013 El Reno/Oklahoma City, OK flash flood case. 36th Conf. on Environmental Information Processing Technologies, Boston, MA, Amer. Meteor. Soc., 12B.4, https://ams.confex.com/ams/2020Annual/webprogram/Paper367153.html.

  • Mandapaka, P. V., and U. Germann, 2010: Radar-rainfall error models and ensemble generators. Rainfall: State of the Science, Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 247–264, https://doi.org/10.1029/2010GM001003.

    • Crossref
    • Export Citation
  • Matrosov, S. Y., 2008: Assessment of radar signal attenuation caused by the melting hydrometeor layer. IEEE Trans. Geosci. Remote Sens., 46, 10391047, https://doi.org/10.1109/TGRS.2008.915757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., F. M. Ralph, P. J. Neiman, and A. B. White, 2014: Quantitative assessment of operational weather radar rainfall estimates over California’s Northern Sonoma County using HMT-West data. J. Hydrometeor., 15, 393410, https://doi.org/10.1175/JHM-D-13-045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971818, https://doi.org/10.1175/2009BAMS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelson, M., W. Shrader, and J. Wieler, 1990: Terminal Doppler weather radar. Microwave J., 33, 139148.

  • Miller, J., R. Frederick, and R. Tracey, 1973: Colorado. Vol. III, Precipitation-Frequency Atlas of the Western United States, NOAA Atlas 2, National Weather Service, 48 pp., https://mhfd.org/wp-content/uploads/2019/12/NOAA_Atlas_2_Precipitation_Frequency_Vol_3_Colorado-1.pdf.

  • Mishra, A. K., 2013: Effect of rain gauge density over the accuracy of rainfall: A case study over Bangalore, India. Springerplus, 2, 311, https://doi.org/10.1186/2193-1801-2-311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Climatic Data Center, 2019: 80-year list of severe weather fatalities. NOAA Doc., https://www.weather.gov/media/hazstat/80years.pdf.

  • National Weather Service, 2018: The Common Operations and Development Environment (CODE) for the WSR-88D open RPG. NOAA, https://www.weather.gov/code88d/.

  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavlovic, S., and Coauthors, 2013: NOAA Atlas 14: Updated precipitation frequency estimates for the United States. 2013 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H52B-07.

  • Qi, Y., S. Martinaitis, J. Zhang, and S. Cocks, 2016: A real-time automated quality control of hourly rain gauge data based on multiple sensors in MRMS system. J. Hydrometeor., 17, 16751691, https://doi.org/10.1175/JHM-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2019: Radar Polarimetry for Weather Observations. Springer, 486 pp., https://doi.org/10.1007/978-3-030-05093-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, https://doi.org/10.1175/JTECH1772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005b: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, https://doi.org/10.1175/JAM2213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schurr, D. W. Burgess, and D. Zrnić, 2005c: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005d: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599619, https://doi.org/10.1175/JTECH-D-13-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Secrest, G., 2016: ZDR calibration update. NOAA Doc., 9 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/TAC/2016/ZDRCalibrationUpdate_TAC2016Mar.pdf.

  • Sene, K., 2012: Flash Floods: Forecasting and Warning. Springer, 395 pp.

  • Smith, J. A., D. J. Seo, M. L. Baeck, and M. D. Hudlow, 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32, 20352045, https://doi.org/10.1029/96WR00270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snow, J., 2017: Memorandum: Recommendation of R(A) technique for QPE. NOAA Radar Operations Center Doc., 1 p., https://www.roc.noaa.gov/WSR88D/PublicDocs/TAC/2017/February2017NEXRADTAC-Specific%20Attenuation%20QPE%20Decision.pdf

  • Stailey, J. E., and K. D. Hondl, 2016: Multifunction phased array radar for aircraft and weather surveillance. Proc. IEEE, 104, 649659, https://doi.org/10.1109/JPROC.2015.2491179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, and V. L. McDowell, 2010: Comparison of rain gauge measurements in the Mid-Atlantic region. J. Hydrometeor., 11, 553565, https://doi.org/10.1175/2009JHM1137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vapnik, V., 1995: The Nature of Statistical Learning Theory. Springer, 201 pp.

  • Wang, Y., S. Cocks, L. Tang, A. Ryzhkov, P. Zhang, J. Zhang, and K. Howard, 2019: A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part I: Algorithm description. J. Hydrometeor., 20, 985997, https://doi.org/10.1175/JHM-D-18-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., J. Y. N. Cho, J. S. Herd, J. M. Flavin, W. E. Benner, and G. S. Torok, 2007: The next-generation multimission U.S. surveillance radar network. Bull. Amer. Meteor. Soc., 88, 17391752, https://doi.org/10.1175/BAMS-88-11-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., K. D. Hondl, M. J. Istok, and R. E. Saffle, 2018: NOAA’s spectrum efficient national surveillance radar (SENSR) research program. 34th Conf. on Environmental Information Processing Technologies, Austin, TX, Amer. Meteor. Soc., 10.1, https://ams.confex.com/ams/98Annual/webprogram/Paper337206.html.

  • Xu, H., C.-Y. Xu, H. Chen, Z. Zhang, and L. Li, 2013: Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China. J. Hydrol., 505, 112, https://doi.org/10.1016/j.jhydrol.2013.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., 2016: Weather Radar Polarimetry. CRC Press, 323 pp.

  • Zhang, J., and Y. Qi, 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. J. Hydrometeor., 11, 11571171, https://doi.org/10.1175/2010JHM1201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Y. Qi, K. Howard, C. Langston, and B. Kaney, 2011a: Radar quality index (RQI)—A combined measure of beam blockage and VPR effects in a national network. Proc. Eighth Int. Symp. on Weather Radar and Hydrology, Exeter, United Kingdom, Royal Meteor. Soc., 388–393.

  • Zhang, J., and Coauthors, 2011b: National mosaic and multi-sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, https://doi.org/10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittel, W. D., J. G. Cunningham, R. R. Lee, L. M. Richardson, R. L. Ice, and V. Melnikov, 2014: Use of hydrometeors, Bragg scatter, and sun spikes to determine system ZDR biases in the WSR-88D fleet. Eighth European Conf. on Radar in Meteorology and Hydrology (ERAD 2014), Garmisch-Partenkirchen, Germany, DWD and DLR, DAC.P12, https://www.roc.noaa.gov/WSR88D/PublicDocs/Publications/132_Zittel.pdf.

  • Zrnić, D. S., and Coauthors, 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, https://doi.org/10.1175/BAMS-88-11-1753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., R. Doviak, G. Zhang, and A. Ryzhkov, 2010a: Bias in differential reflectivity due to cross coupling through the radiation patterns of polarimetric weather radars. J. Atmos. Oceanic Technol., 27, 16241637, https://doi.org/10.1175/2010JTECHA1350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., G. Zhang, and R. J. Doviak, 2010b: Bias correction and Doppler measurement for polarimetric phased-array radar. IEEE Trans. Geosci. Remote Sens., 49, 843853, https://doi.org/10.1109/TGRS.2010.2057436.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 64 64 11
Full Text Views 39 39 14
PDF Downloads 48 48 13

Geospatial QPE Accuracy Dependence on Weather Radar Network Configurations

View More View Less
  • 1 Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts
  • 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • 3 School of Civil Engineering and Environmental Sensing, University of Oklahoma, Norman, Oklahoma
  • 4 Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • 5 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

The relatively low density of weather radar networks can lead to low-altitude coverage gaps. As existing networks are evaluated for gap fillers and new networks are designed, the benefits of low-altitude coverage must be assessed quantitatively. This study takes a regression approach to modeling quantitative precipitation estimation (QPE) differences based on network density, antenna aperture, and polarimetric bias. Thousands of cases from the warm-season months of May–August 2015–17 are processed using both the specific attenuation [R(A)] and reflectivity–differential reflectivity [R(Z, ZDR)] QPE methods and are compared with Automated Surface Observing System (ASOS) rain gauge data. QPE errors are quantified on the basis of beam height, cross-radial resolution, added polarimetric bias, and observed rainfall rate. The collected data are used to construct a support vector machine regression model that is applied to the current WSR-88D network for holistic error quantification. An analysis of the effects of polarimetric bias on flash-flood rainfall rates is presented. Rainfall rates that are based on 2-yr/1-h return rates are used for a contiguous-U.S.-wide analysis of QPE errors in extreme rainfall situations. These errors are then requantified using previously proposed network design scenarios with additional radars that provide enhanced estimate capabilities. Last, a gap-filling scenario utilizing the QPE error model, flash-flood rainfall rates, population density, and potential additional WSR-88D sites is presented, exposing the highest-benefit coverage holes in augmenting the WSR-88D network (or a future network) relative to QPE performance.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James M. Kurdzo, james.kurdzo@ll.mit.edu

Abstract

The relatively low density of weather radar networks can lead to low-altitude coverage gaps. As existing networks are evaluated for gap fillers and new networks are designed, the benefits of low-altitude coverage must be assessed quantitatively. This study takes a regression approach to modeling quantitative precipitation estimation (QPE) differences based on network density, antenna aperture, and polarimetric bias. Thousands of cases from the warm-season months of May–August 2015–17 are processed using both the specific attenuation [R(A)] and reflectivity–differential reflectivity [R(Z, ZDR)] QPE methods and are compared with Automated Surface Observing System (ASOS) rain gauge data. QPE errors are quantified on the basis of beam height, cross-radial resolution, added polarimetric bias, and observed rainfall rate. The collected data are used to construct a support vector machine regression model that is applied to the current WSR-88D network for holistic error quantification. An analysis of the effects of polarimetric bias on flash-flood rainfall rates is presented. Rainfall rates that are based on 2-yr/1-h return rates are used for a contiguous-U.S.-wide analysis of QPE errors in extreme rainfall situations. These errors are then requantified using previously proposed network design scenarios with additional radars that provide enhanced estimate capabilities. Last, a gap-filling scenario utilizing the QPE error model, flash-flood rainfall rates, population density, and potential additional WSR-88D sites is presented, exposing the highest-benefit coverage holes in augmenting the WSR-88D network (or a future network) relative to QPE performance.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James M. Kurdzo, james.kurdzo@ll.mit.edu
Save