• Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, https://doi.org/10.1175/BAMS-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carruthers, D. J., J. C. R. Hunt, and W. S. Weng, 1988: A computational model of stratified turbulent airflow over hills—FLOWSTAR I. Computer Techniques in Environmental Studies, P. Zanetti, Ed., Springer-Verlag, 481–492.

  • Chan, P. W., 2009: Aviation applications of the pulsed Doppler lidar—Experience in Hong Kong. Open Atmos. Sci. J., 3, 138146, https://doi.org/10.2174/1874282300903010138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, P. W., 2010: Lidar-based turbulence intensity calculation using glide-path scans of the Doppler light detection and ranging (lidar) systems at the Hong Kong International Airport and comparison with flight data and a turbulence alerting system. Meteor. Z., 19, 549563, https://doi.org/10.1127/0941-2948/2010/0471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, P. W., 2012: Application of lidar-based F-factor in windshear alerting. Meteor. Z., 21, 193204, https://doi.org/10.1127/0941-2948/2012/0321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, P. W., and A. M. Shao, 2007: Depiction of complex airflow near Hong Kong International Airport using a Doppler lidar with a two-dimensional wind retrieval technique. Meteor. Z., 16, 491504, https://doi.org/10.1127/0941-2948/2007/0220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, P. W., and Y. F. Lee, 2012: Application of short-range lidar in wind shear alerting. J. Atmos. Oceanic Technol., 29, 207220, https://doi.org/10.1175/JTECH-D-11-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, P. W., K. K. Hon, and D. K. Shin, 2011: Combined use of headwind ramps and gradients based on lidar data in the alerting of low-level windshear/turbulence. Meteor. Z., 20, 661670, https://doi.org/10.1127/0941-2948/2011/0242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y., G.-H. Lim, and D.-K. Lee, 2013: Radar radial wind data assimilation using the time-incremental 4D-Var method implemented to the WRFDA system. Tellus, 65A, 19677, https://doi.org/10.3402/tellusa.v65i0.19677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fawcett, T., 2006: An introduction to ROC analysis. Pattern Recognit. Lett., 27, 861874, https://doi.org/10.1016/j.patrec.2005.10.010.

  • Fowler, A. M., S. L. Dance, and J. A. Waller, 2018: On the interaction of observation and prior error correlations in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 4862, https://doi.org/10.1002/qj.3183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, G., 2001: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D, 149, 248277, https://doi.org/10.1016/S0167-2789(00)00199-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hon, K. K., and P. W. Chan, 2014: Application of lidar-derived eddy dissipation rate profiles in low-level wind shear and turbulence alerts at Hong Kong International Airport. Meteor. Appl., 21, 7485, https://doi.org/10.1002/met.1430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hon, K. K., P. W. Chan, Y. Y. Chiu, and W. Tang, 2014: Application of short-range lidar in early alerting for low-level windshear and turbulence at Hong Kong International Airport. Adv. Meteor., 2014, 162748, https://doi.org/10.1155/2014/162748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., and Coauthors, 2009: Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev., 137, 299314, https://doi.org/10.1175/2008MWR2577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., P. W. Chan, and G. Haller, 2013: Lagrangian detection of wind shear for landing aircraft. J. Atmos. Oceanic Technol., 30, 28082819, https://doi.org/10.1175/JTECH-D-12-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, B., 2018: Pattern identification and analysis in urban flows. Ph.D. dissertation, Arizona State University, 132 pp., https://repository.asu.edu/attachments/211431/content/Knutson_asu_0010E_18517.pdf.

  • Knutson, B., W. Tang, and P. W. Chan, 2015: Lagrangian coherent structure analysis of terminal winds: Three-dimensionality, intramodel variations, and flight analyses. Adv. Meteor., 2015, 816727, https://doi.org/10.1155/2015/816727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, Y. F., and P. W. Chan, 2014: Lidar-based F-factor for wind shear alerting: Different smoothing algorithms and application to departing flights. Meteor. Appl., 21, 8693, https://doi.org/10.1002/met.1434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., E. Kalnay, and H. Li, 2013: Estimating and including observation-error correlations in data assimilation. Inverse Probl. Sci. Eng., 21, 387398, https://doi.org/10.1080/17415977.2012.712527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oude Nijhuis, A. C. P., and Coauthors, 2018: Wind hazard and turbulence monitoring at airports with lidar, radar, and mode-S downlinks: The UFO project. Bull. Amer. Meteor. Soc., 99, 22752293, https://doi.org/10.1175/BAMS-D-15-00295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49, 6991, https://doi.org/10.1007/BF01025401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Routray, A., U. C. Mohanty, S. R. H. Rizvi, D. Niyogi, K. K. Osuri, and D. Pradhan, 2010: Impact of Doppler weather radar data on numerical forecast of Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 136, 18361850, https://doi.org/10.1002/qj.678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawada, M., T. Sakai, T. Iwasaki, H. Seko, K. Saito, and T. Miyoshi, 2015: Assimilating high-resolution winds from a Doppler lidar using an ensemble Kalman filter with lateral boundary adjustment. Tellus, 67A, 23473, https://doi.org/10.3402/TELLUSA.v67.23473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shun, C. M., and S. Y. Lau, 2002: Implementation of a Doppler light detection and ranging (lidar) system for the Hong Kong International Airport. 10th Conf. on Aviation, Range and Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., 8.3, https://ams.confex.com/ams/pdfpapers/39018.pdf.

  • Shun, C. M., and P. W. Chan, 2008: Applications of an infrared Doppler lidar in detection of wind shear. J. Atmos. Oceanic Technol., 25, 637655, https://doi.org/10.1175/2007JTECHA1057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

    • Crossref
    • Export Citation
  • Sun, J., and H. Wang, 2013: WRF-ARW variational storm-scale data assimilation: Current capabilities and future developments. Adv. Meteor., 2013, 815910, https://doi.org/10.1155/2013/815910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, W., P. W. Chan, and G. Haller, 2010: Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong International Airport. Chaos, 20, 017502, https://doi.org/10.1063/1.3276061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, W., P. W. Chan, and G. Haller, 2011a: Lagrangian coherent structure analysis of terminal winds detected by lidar. Part II: Structure evolution and comparison with flight data. J. Appl. Meteor. Climatol., 50, 21672183, https://doi.org/10.1175/2011JAMC2689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, W., P. W. Chan, and G. Haller, 2011b: Lagrangian coherent structure analysis of terminal winds detected by lidar. Part I: Turbulence structures. J. Appl. Meteor. Climatol., 50, 325338, https://doi.org/10.1175/2010JAMC2508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, X. Zhang, X.-Y. Huang, and T. Auligne, 2013: Radar data assimilation with WRF 4D-VAR. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 22242244, https://doi.org/10.1175/MWR-D-12-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, W. K., and P. W. Chan, 2013: Data Assimilation of Weather Radar and Lidar for Convection Forecasting and Windshear Alerting in Aviation Applications. Vol. II, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Springer, 527–554.

    • Crossref
    • Export Citation
  • Xiao, Q., and J. Sun, 2007: Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Mon. Wea. Rev., 135, 33813404, https://doi.org/10.1175/MWR3471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768788, https://doi.org/10.1175/JAM2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 78 78 21
Full Text Views 22 22 11
PDF Downloads 35 35 12

Terminal Wind Hazard Analyses Based on Assimilated Weather Data and Lagrangian Coherent Structures

View More View Less
  • 1 School of Mathematical and Statistics Sciences, Arizona State University, Tempe, Arizona
  • 2 Hong Kong Observatory, Hong Kong, China
© Get Permissions
Restricted access

Abstract

The operational light detection and ranging (lidar) data from the Hong Kong International Airport (HKIA) in China are assimilated in the six-nest, high-resolution Weather Research and Forecasting (WRF) Model. The existing radar data assimilation schemes in the WRF data assimilation (WRFDA) package have been adapted to accommodate the high temporal frequency and spatial resolution of the lidar observations. The weather data are then used to produce Lagrangian coherent structures to detect atmospheric hazards for flights. The coherent structures obtained from the various datasets are contrasted against flight data measured on aircraft. It is found that both WRF and WRFDA produce coherent structures that are more distinguishable than those obtained from two-dimensional retrieval, which may improve the detection of true wind shear hazards.

Current affiliation: U.S. Bank, Charlotte, North Carolina.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenbo Tang, wenbo.tang@asu.edu

Abstract

The operational light detection and ranging (lidar) data from the Hong Kong International Airport (HKIA) in China are assimilated in the six-nest, high-resolution Weather Research and Forecasting (WRF) Model. The existing radar data assimilation schemes in the WRF data assimilation (WRFDA) package have been adapted to accommodate the high temporal frequency and spatial resolution of the lidar observations. The weather data are then used to produce Lagrangian coherent structures to detect atmospheric hazards for flights. The coherent structures obtained from the various datasets are contrasted against flight data measured on aircraft. It is found that both WRF and WRFDA produce coherent structures that are more distinguishable than those obtained from two-dimensional retrieval, which may improve the detection of true wind shear hazards.

Current affiliation: U.S. Bank, Charlotte, North Carolina.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenbo Tang, wenbo.tang@asu.edu
Save