• Akbari, H., and Coauthors, 2016: Local climate change and urban heat island mitigation techniques—The state of the art. J. Civ. Eng. Manage., 22, 116, https://doi.org/10.3846/13923730.2015.1111934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, https://doi.org/10.1002/JOC.859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azevedo, J. A., L. Chapman, and C. L. Muller, 2016: Quantifying the daytime and night-time urban heat island in Birmingham, UK: A comparison of satellite derived land surface temperature and high resolution air temperature observations. Remote Sens., 8, 153, https://doi.org/10.3390/RS8020153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohnenstengel, S., S. Evans, P. A. Clark, and S. Belcher, 2011: Simulations of the London urban heat island. Quart. J. Roy. Meteor. Soc., 137, 16251640, https://doi.org/10.1002/QJ.855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boswell, M., A. Greve, and T. Seale, 2019: Climate Action Planning: A Guide to Creating Low-Carbon, Resilient Communities. Island Press, 380 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/JOC.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, W. T., R. L. Pope, C. A. Martin, and A. J. Brazel, 2011: Observing and modeling the nocturnal park cool island of an arid city: Horizontal and vertical impacts. Theor. Appl. Climatol., 103, 197211, https://doi.org/10.1007/S00704-010-0293-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • City of Kansas City, Division of Community Engagement, Policy and Accountability, 2017: A segregated Kansas City is not good for our health. KCMO Public Health Connection 37, 6 pp., https://www.kcmo.gov/home/showdocument?id=3477.

  • Colasanti, K. J., M. W. Hamm, and C. M. Litjens, 2012: The city as an “agricultural powerhouse”? Perspectives on expanding urban agriculture from Detroit, Michigan. Urban Geogr., 33, 348369, https://doi.org/10.2747/0272-3638.33.3.348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielson, J. J., and D. B. Gesch, 2011: Global multi-resolution terrain elevation data 2010 (GMTED2010). U.S. Geological Survey Tech. Rep., 26 pp., https://doi.org/10.3133/OFR20111073.

    • Crossref
    • Export Citation
  • Declet-Barreto, J., A. J. Brazel, C. A. Martin, W. T. Chow, and S. L. Harlan, 2013: Creating the park cool island in an inner-city neighborhood: Heat mitigation strategy for Phoenix, AZ. Urban Ecosyst., 16, 617635, https://doi.org/10.1007/S11252-012-0278-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doick, K. J., A. Peace, and T. R. Hutchings, 2014: The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci. Total Environ., 493, 662671, https://doi.org/10.1016/J.SCITOTENV.2014.06.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estoque, R. C., Y. Murayama, and S. W. Myint, 2017: Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ., 577, 349359, https://doi.org/10.1016/J.SCITOTENV.2016.10.195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feyisa, G. L., K. Dons, and H. Meilby, 2014: Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape Urban Plann., 123, 8795, https://doi.org/10.1016/J.LANDURBPLAN.2013.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frumkin, H., 2002: Urban sprawl and public health. Public Health Rep., 117, 201217, https://doi.org/10.1016/S0033-3549(04)50155-3.

  • Fu, P., and Q. Weng, 2017: Responses of urban heat island in Atlanta to different land-use scenarios. Theor. Appl. Climatol., 133, 123135, https://doi.org/10.1007/s00704-017-2160-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannaros, C., A. Nenes, T. M. Giannaros, K. Kourtidis, and D. Melas, 2018: A comprehensive approach for the simulation of the urban heat island effect with the WRF/SLUCM modeling system: The case of Athens (Greece). Atmos. Res., 201, 86101, https://doi.org/10.1016/J.ATMOSRES.2017.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glotfelty, T., M. Tewari, K. Sampson, M. Duda, F. Chen, and J. Ching, 2013: Nudapt 44 documentation. NCAR Research Applications Laboratory Doc., 9 pp., https://ral.ucar.edu/sites/default/files/public/product-tool/NUDAPT_44_Documentation.pdf.

  • Gutiérrez, E., J. E. González, A. Martilli, R. Bornstein, and M. Arend, 2015: Simulations of a heat-wave event in New York City using a multilayer urban parameterization. J. Appl. Meteor. Climatol., 54, 283301, https://doi.org/10.1175/JAMC-D-14-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, M. A., and D. J. Sailor, 2009: Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol., 95, 397406, https://doi.org/10.1007/S00704-008-0017-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heckert, M., and J. Mennis, 2012: The economic impact of greening urban vacant land: A spatial difference-in-differences analysis. Environ. Plann., 44A, 30103027, https://doi.org/10.1068/A4595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homer, C., and Coauthors, 2015: Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information. Photogramm. Eng. Remote Sens., 81, 346354, https://doi.org/10.14358/PERS.81.5.345.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imhoff, M. L., P. Zhang, R. E. Wolfe, and L. Bounoua, 2010: Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ., 114, 504513, https://doi.org/10.1016/J.RSE.2009.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. C. B. Field et al., Eds., Cambridge University Press, 1132 pp., https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartA_FINAL.pdf.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. S., M. Liang, M. Kilbourne, M. Griffin, H. D. Donnell Jr., and S. B. Thacker, 1982: Morbidity and mortality associated with the July 1980 heat wave in St Louis and Kansas City, MO. JAMA, 247, 33273331, https://doi.org/10.1001/JAMA.1982.03320490025030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M.-A., 2015: The creative class, urban boosters, and race: Shaping urban revitalization in Kansas City, Missouri. J. Urban Hist., 41, 245260, https://doi.org/10.1177/0096144214563504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-X., and L. K. Norford, 2016: Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Climate, 16, 5974, https://doi.org/10.1016/J.UCLIM.2015.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304, https://doi.org/10.1023/A:1016099921195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meerow, S., and J. P. Newell, 2017: Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landscape. Urban Plann., 159, 6275, https://doi.org/10.1016/J.LANDURBPLAN.2016.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mid-America Regional Council, 2013: Troost corridor redevelopment plan: A plan for a sustainable Troost Avenue. MARC Rep., 115 pp., https://www.marc.org/Regional-Planning/pdf/TroostCorridorFinalReport.aspx.

  • Monaghan, A. J., L. Hu, N. A. Brunsell, M. Barlage, and O. V. Wilhelmi, 2014: Evaluating the impact of urban morphology configurations on the accuracy of urban canopy model temperature simulations with MODIS. J. Geophys. Res. Atmos., 119, 63766392, https://doi.org/10.1002/2013JD021227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morini, E., A. G. Touchaei, B. Castellani, F. Rossi, and F. Cotana, 2016: The impact of albedo increase to mitigate the urban heat island in Terni (Italy) using the WRF Model. Sustainability, 8, 999, https://doi.org/10.3390/SU8100999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murage, P., S. Hajat, and R. S. Kovats, 2017: Effect of night-time temperatures on cause and age-specific mortality in London. Environ. Epidemiol., 1, e005, https://doi.org/10.1097/EE9.0000000000000005.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., K. K. Osuri, N. Busireddy, and R. Nadimpalli, 2020: Timing of rainfall occurrence altered by urban sprawl. Urban Climate, 33, 100643, https://doi.org/10.1016/j.uclim.2020.100643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124, https://doi.org/10.1256/SMSQJ.45501.

    • Search Google Scholar
    • Export Citation
  • Oke, T., 1988: The urban energy balance. Prog. Phys. Geogr., 12, 471508, https://doi.org/10.1177/030913338801200401.

  • Oke, T., 1995: The heat island of the urban boundary layer: Characteristics, causes and effects. Wind Climate in Cities, Springer, 81–107.

    • Crossref
    • Export Citation
  • Oliveira, S., H. Andrade, and T. Vaz, 2011: The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ., 46, 21862194, https://doi.org/10.1016/j.buildenv.2011.04.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pagano, M. A., and A. O. Bowman, 2000: Vacant land in cities: An urban resource. Center on Urban and Metropolitan Policy Rep., 9 pp., https://www.brookings.edu/wp-content/uploads/2016/06/paganofinal.pdf.

  • Papangelis, G., M. Tombrou, A. Dandou, and T. Kontos, 2012: An urban “green planning” approach utilizing the Weather Research and Forecasting (WRF) modeling system. A case study of Athens, Greece. Landscape Urban Plann., 105, 174183, https://doi.org/10.1016/j.landurbplan.2011.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and Coauthors, 2011: Surface urban heat island across 419 global big cities. Environ. Sci. Technol., 46, 696703, https://doi.org/10.1021/es2030438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randolph, J., 2012: Environmental Land Use Planning and Management. Island Press, 746 pp.

  • Revi, A., and Coauthors, 2014: Urban areas. Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, C. B. Field et al., Eds., Cambridge University Press, 535–612, https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap8_FINAL.pdf.

  • Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part I. Formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol., 99, 331344, https://doi.org/10.1007/s00704-009-0142-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Martilli, and C. Yagüe, 2012: A numerical study of the urban heat island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies. Int. J. Climatol., 32, 23722386, https://doi.org/10.1002/joc.3398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., M. Georgescu, A. Mahalov, M. Moustaoui, and M. Wang, 2014: Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos., 119, 59495965, https://doi.org/10.1002/2013JD021225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santamouris, M., 2013: Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renewable Sustainable Energy Rev., 26, 224240, https://doi.org/10.1016/j.rser.2013.05.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santamouris, M., 2014: Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy, 103, 682703, https://doi.org/10.1016/j.solener.2012.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schilling, J., and J. Logan, 2008: Greening the Rust Belt: A green infrastructure model for right sizing America’s shrinking cities. J. Amer. Plann. Assoc., 74, 451466, https://doi.org/10.1080/01944360802354956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shahmohamadi, P., A. Che-Ani, K. Maulud, N. Tawil, and N. Abdullah, 2011: The impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Stud. Res., 2011, 497524, https://doi.org/10.1155/2011/497524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, https://doi.org/10.1175/EI156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., http://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Stone, B., 2012: The City and the Coming Climate: Climate Change in the Places We Live. Cambridge University Press, 187 pp.

  • Susca, T., S. R. Gaffin, and G. Dell’Osso, 2011: Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut., 159, 21192126, https://doi.org/10.1016/j.envpol.2011.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taha, H., 1997: Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build., 25, 99103, https://doi.org/10.1016/S0378-7788(96)00999-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takebayashi, H., and M. Moriyama, 2007: Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build. Environ., 42, 29712979, https://doi.org/10.1016/j.buildenv.2006.06.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., and Coauthors, 2010: The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeor., 54, 7584, https://doi.org/10.1007/s00484-009-0256-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2A, https://ams.confex.com/ams/pdfpapers/69061.pdf.

  • Tran, H., D. Uchihama, S. Ochi, and Y. Yasuoka, 2006: Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf., 8, 3448, https://doi.org/10.1016/j.jag.2005.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Census Bureau, 2011: Population change for metropolitan and micropolitan statistical areas in the United States and Puerto Rico: 2000 to 2010 (CPH-T-2). U.S. Census Bureau, https://www.census.gov/data/tables/time-series/dec/cph-series/cph-t/cph-t-2.html.

  • U.S. Census Bureau, 2018: Annual estimates of the resident population: April 1, 2010 to July 1, 2017, United States metropolitan statistical area; and for Puerto Rico, 2017 population estimates. U.S. Census Bureau, https://www.wpr.org/sites/default/files/RK census report.pdf.

  • Voogt, J., 2007: How researchers measure urban heat islands. U.S. Environmental Protection Agency Presentation Material, 34 pp., https://19january2017snapshot.epa.gov/sites/production/files/2014-07/documents/epa_how_to_measure_a_uhi.pdf.

  • Wesley, E. J., and N. A. Brunsell, 2019: Greenspace pattern and the surface urban heat island: A biophysically-based approach to investigating the effects of urban landscape configuration. Remote Sens., 11, 23202322, https://doi.org/10.3390/rs11192322.

    • Search Google Scholar
    • Export Citation
  • Yang, L., D. Niyogi, M. Tewari, D. Aliaga, F. Chen, F. Tian, and G. Ni, 2016: Contrasting impacts of urban forms on the future thermal environment: Example of Beijing metropolitan area. Environ. Res. Lett., 11, 034018, https://doi.org/10.1088/1748-9326/11/3/034018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and J. M. Shepherd, 2010: Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies. Nat. Hazards, 52, 639668, https://doi.org/10.1007/s11069-009-9406-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 174 174 90
Full Text Views 31 31 11
PDF Downloads 35 35 7

Conversion of Abandoned Property to Green Space as a Strategy to Mitigate the Urban Heat Island Investigated with Numerical Simulations

View More View Less
  • 1 Department of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas
  • 2 Urban Planning Program, School of Public Affairs and Administration, University of Kansas, Lawrence, Kansas
© Get Permissions
Restricted access

Abstract

Impervious surfaces and buildings in the urban environment alter the radiative balance and surface energy exchange and can lead to warmer temperatures known as the urban heat island (UHI), which can increase heat-related illness and mortality. Continued urbanization and anthropogenic warming will enhance city temperatures worldwide, raising the need for viable mitigation strategies. Increasing green space throughout a city is a viable option to lessen the impacts of the UHI but can be difficult to implement. The potential impact of converting existing vacant lots in Kansas City, Missouri, to green spaces is explored with numerical simulations for three heat-wave events. Using data on vacant property and identifying places with a high fraction of impervious surfaces, the most suitable areas for converting vacant lots to green spaces is determined. Land-use/land-cover datasets are modified to simulate varying degrees of feasible conversion of urban to green spaces in these areas, and the local cooling effect using each strategy is compared with the unmodified simulation. Under more aggressive greening strategies, a mean local cooling impact of 0.5°–1.0°C is present within the focus area itself during the nighttime hours. Some additional cooling via the “park cool island” is possible downwind of the converted green spaces under the more aggressive scenarios. Although moderate and conservative strategies of conversion could still lead to other benefits, those strategies have little impact on cooling. Only an aggressive approach yields significant cooling.

Current affiliation: National Weather Service, Houston/Galveston Forecast Office, Dickinson, Texas.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David A. Rahn, darahn@ku.edu

Abstract

Impervious surfaces and buildings in the urban environment alter the radiative balance and surface energy exchange and can lead to warmer temperatures known as the urban heat island (UHI), which can increase heat-related illness and mortality. Continued urbanization and anthropogenic warming will enhance city temperatures worldwide, raising the need for viable mitigation strategies. Increasing green space throughout a city is a viable option to lessen the impacts of the UHI but can be difficult to implement. The potential impact of converting existing vacant lots in Kansas City, Missouri, to green spaces is explored with numerical simulations for three heat-wave events. Using data on vacant property and identifying places with a high fraction of impervious surfaces, the most suitable areas for converting vacant lots to green spaces is determined. Land-use/land-cover datasets are modified to simulate varying degrees of feasible conversion of urban to green spaces in these areas, and the local cooling effect using each strategy is compared with the unmodified simulation. Under more aggressive greening strategies, a mean local cooling impact of 0.5°–1.0°C is present within the focus area itself during the nighttime hours. Some additional cooling via the “park cool island” is possible downwind of the converted green spaces under the more aggressive scenarios. Although moderate and conservative strategies of conversion could still lead to other benefits, those strategies have little impact on cooling. Only an aggressive approach yields significant cooling.

Current affiliation: National Weather Service, Houston/Galveston Forecast Office, Dickinson, Texas.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David A. Rahn, darahn@ku.edu
Save