• Aida, M., and M. Yaji, 1979: Observations of atmospheric downward radiation in the Tokyo area. Bound.-Layer Meteor., 16, 453465, https://doi.org/10.1007/BF03335384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., L. Wang, X. Zhi, W. Gu, H. Yang, and D. Li, 2019: Observed synergies between urban heat islands and heat waves and their controlling factors in Shanghai, China. J. Appl. Meteor. Climatol., 58, 19551972, https://doi.org/10.1175/JAMC-D-19-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, https://doi.org/10.1002/joc.859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History and Applications. Springer Netherlands, 302 pp.

    • Crossref
    • Export Citation
  • Brutsaert, W., 2005: Hydrology: An Introduction. Cambridge University Press, 605 pp.

    • Crossref
    • Export Citation
  • Burakowski, E., A. Tawfik, A. Ouimette, L. Lepine, K. Novick, S. Ollinger, C. Zarzycki, and G. Bonan, 2018: The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the eastern United States. Agric. For. Meteor., 249, 367376, https://doi.org/10.1016/j.agrformet.2017.11.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and F. E. Boland, 1978: Analysis of urban–rural canopy using a surface heat flux/temperature model. J. Appl. Meteor., 17, 9981013, https://doi.org/10.1175/1520-0450(1978)017<0998:AOURCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., Wang, L., Ranga, M., Li, D., 2020: Attribution of land-use/land-cover change induced surface temperature anomaly: How accurate is the first-order Taylor series expansion? J. Geophys. Res. Biogeosci., 125, e2020JG005787, https://doi.org/10.1029/2020JG005787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and P. A. Dirmeyer, 2016: Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling. Environ. Res. Lett., 11, 034002, https://doi.org/10.1088/1748-9326/11/3/034002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christen, A., and R. Vogt, 2004: Energy and radiation balance of a central European city. Int. J. Climatol., 24, 13951421, https://doi.org/10.1002/joc.1074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleugh, H. A., and T. R. Oke, 1986: Suburban–rural energy balance comparisons in summer for Vancouver, B.C. Bound.-Layer Meteor., 36, 351369, https://doi.org/10.1007/BF00118337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estournel, C., R. Vehil, D. Guedalia, J. Fontan, and A. Druilhet, 1983: Observations and modeling of downward radiative fluxes (solar and infrared) in urban/rural areas. J. Climate Appl. Meteor., 22, 134142, https://doi.org/10.1175/1520-0450(1983)022<0134:OAMODR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foken, T., 2008: The energy balance closure problem: An overview. Ecol. Appl., 18, 13511367, https://doi.org/10.1890/06-0922.1.

  • Franssen, H. J. H., R. Stöckli, I. Lehner, E. Rotenberg, and S. I. Seneviratne, 2010: Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations. Agric. For. Meteor., 150, 15531567, https://doi.org/10.1016/j.agrformet.2010.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, C.-M., J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, S. Roselle, and C. Wei, 2014: Assessment of the effect of air pollution controls on trends in shortwave radiation over the United States from 1995 through 2010 from multiple observation networks. Atmos. Chem. Phys., 14, 17011715, https://doi.org/10.5194/acp-14-1701-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. Briggs, 2008: Global change and the ecology of cities. Science, 319, 756760, https://doi.org/10.1126/science.1150195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 2007: Urbanization and global environmental change: Local effects of urban warming. Geogr. J., 173, 8388, https://doi.org/10.1111/j.1475-4959.2007.232_3.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1995: Comparison of heat fluxes from summertime observations in the suburbs of four North American cities. J. Appl. Meteor., 34, 873889, https://doi.org/10.1175/1520-0450(1995)034<0873:COHFFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., J. A. Salmond, T. R. Oke, B. Offerle, and A. Lemonsu, 2004: Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. J. Geophys. Res., 109, D24101, https://doi.org/10.1029/2004JD004936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., and D. Li, 2018: A modeling study of the sensitivity of urban heat islands to precipitation at climate scales. Urban Climate, 24, 982993, https://doi.org/10.1016/j.uclim.2017.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, W., X. Wang, J. Sun, A. Ding, and J. Zou, 2016: Comparison of land–atmosphere interaction at different surface types in the mid- to lower reaches of the Yangtze River valley. Atmos. Chem. Phys., 16, 98759890, https://doi.org/10.5194/acp-16-9875-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imhoff, M. L., P. Zhang, R. E. Wolfe, and L. Bounoua, 2010: Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ., 114, 504513, https://doi.org/10.1016/j.rse.2009.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jáuregui, E., and E. Luyando, 1999: Global radiation attenuation by air pollution and its effects on the thermal climate in Mexico City. Int. J. Climatol., 19, 683694, https://doi.org/10.1002/(SICI)1097-0088(199905)19:6<683::AID-JOC389>3.0.CO;2-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalanda, B., T. Oke, and D. Spittlehouse, 1980: Suburban energy balance estimates for Vancouver, B.C., using the Bowen ratio-energy balance approach. J. Appl. Meteor., 19, 791802, https://doi.org/10.1175/1520-0450(1980)019<0791:SEBEFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., and Coauthors, 2011: Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384387, https://doi.org/10.1038/nature10588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leuning, R., E. van Gorsela, W. J. Massman, and P. R. Isaac, 2012: Reflections on the surface energy imbalance problem. Agric. For. Meteor., 156, 6574, https://doi.org/10.1016/j.agrformet.2011.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., 2019: Turbulent Prandtl number in the atmospheric boundary layer – where are we now? Atmos. Res., 216, 86105, https://doi.org/10.1016/j.atmosres.2018.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., and L. Wang, 2019: Sensitivity of surface temperature to land use and land cover change-induced biophysical changes: The scale issue. Geophys. Res. Lett., 46, 96789689, https://doi.org/10.1029/2019GL084861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., T. Sun, M. Liu, L. Yang, L. Wang, and Z. Gao, 2015: Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environ. Res. Lett., 10, 054009, https://doi.org/10.1088/1748-9326/10/5/054009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., S. Malyshev, and E. Shevliakova, 2016a: Exploring historical and future urban climate in the Earth system modeling framework: 1. Model development and evaluation. J. Adv. Model. Earth Syst., 8, 917935, https://doi.org/10.1002/2015MS000578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., S. Malyshev, and E. Shevliakova, 2016b: Exploring historical and future urban climate in the Earth system modeling framework: 2. Impact of urban land use over the continental United States. J. Adv. Model. Earth Syst., 8, 936953, https://doi.org/10.1002/2015MS000579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., W. Liao, A. J. Rigden, X. Liu, D. Wang, S. Malyshev, and E. Shevliakova, 2019: Urban heat island: Aerodynamics or imperviousness? Sci. Adv., 5, eaau4299, https://doi.org/10.1126/sciadv.aau4299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and E. Bou-Zeid, 2019: Contrasts between momentum and scalar transport over very rough surfaces. J. Fluid Mech., 880, 3258, https://doi.org/10.1017/jfm.2019.687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., E. Bou-Zeid, S. Grimmond, S. Zilitinkevich, and G. Katul, 2020: Revisiting the relation between momentum and scalar roughness lengths of urban surfaces. Quart. J. Roy. Meteor. Soc., 146, 3144–3164, https://doi.org/10.1002/qj.3839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, W., A. J. Rigden, and D. Li, 2018: Attribution of local temperature response to deforestation. J. Geophys. Res. Biogeosci., 123, 15721587, https://doi.org/10.1029/2018JG004401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S. M., Z. W. Xu, W. Z. Wang, Z. Z. Jia, M. J. Zhu, J. Bai, and J. M. Wang, 2011: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci., 15, 12911306, https://doi.org/10.5194/hess-15-1291-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manoli, G., and Coauthors, 2019: Magnitude of urban heat islands largely explained by climate and population. Nature, 573, 5560, https://doi.org/10.1038/s41586-019-1512-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauder, M., M. Cuntz, C. Drüe, A. Graf, C. Rebmann, H. P. Schmid, M. Schmidt, and R. Steinbrecher, 2013: A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. For. Meteor., 169, 122135, https://doi.org/10.1016/j.agrformet.2012.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J., and M. Unsworth, 2007: Principles of Environmental Physics. Academic Press, 440 pp.

  • Moon, M., D. Li, W. Liao, A. J. Rigden, and M. A. Friedl, 2020: Modification of surface energy balance during springtime: The relative importance of biophysical and meteorological changes. Agric. For. Meteor., 284, 107905, https://doi.org/10.1016/j.agrformet.2020.107905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mora, C., and Coauthors, 2017: Global risk of deadly heat. Nat. Climate Change, 7, 501506, https://doi.org/10.1038/nclimate3322.

  • Núñez, M., I. Eliasson, and J. Lindgren, 2000: Spatial variation of incoming longwave radiation in Göteborg, Sweden. Theor. Appl. Climatol., 67, 181192, https://doi.org/10.1007/s007040070007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, K. Fortuniak, K. Kłysik, and T. R. Oke, 2006: Temporal variations in heat fluxes over a central European city centre. Theor. Appl. Climatol., 84, 103115, https://doi.org/10.1007/s00704-005-0148-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124, https://doi.org/10.1002/qj.49710845502.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1988: The urban energy balance. Prog. Phys. Geogr., 12, 471508, https://doi.org/10.1177/030913338801200401.

  • Oke, T. R., and R. F. Fuggle, 1972: Comparison of urban/rural counter and net radiation at night. Bound.-Layer Meteor., 2, 290308, https://doi.org/10.1007/BF02184771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climate. Cambridge University Press, 546 pp.

    • Crossref
    • Export Citation
  • Oleson, K. W., G. B. Bonan, J. Feddema, and M. Vertenstein, 2008a: An urban parameterization for a global climate model. Part II: Sensitivity to input parameters and the simulated urban heat island in offline simulations. J. Appl. Meteor. Climatol., 47, 10611076, https://doi.org/10.1175/2007JAMC1598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008b: An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 10381060, https://doi.org/10.1175/2007JAMC1597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and Coauthors, 2012: Surface urban heat island across 419 global big cities. Environ. Sci. Technol., 46, 696703, https://doi.org/10.1021/es2030438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, J., and E. Flowers, 1977: Interactions between air-pollution and solar-radiation. Sol. Energy, 19, 2332, https://doi.org/10.1016/0038-092X(77)90085-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramamurthy, P., E. Bou-Zeid, J. A. Smith, Z. Wang, M. L. Baeck, N. Z. Saliendra, J. L. Hom, and C. Welty, 2014: Influence of subfacet heterogeneity and material properties on the urban surface energy budget. J. Appl. Meteor. Climatol., 53, 21142129, https://doi.org/10.1175/JAMC-D-13-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigden, A. J., and D. Li, 2017: Attribution of surface temperature anomalies induced by land use and land cover changes. Geophys. Res. Lett., 44, 68146822, https://doi.org/10.1002/2017GL073811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydin, Y., and Coauthors, 2012: Shaping cities for health: Complexity and the planning of urban environments in the 21st century. Lancet, 379, 20792108, https://doi.org/10.1016/S0140-6736(12)60435-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanhill, G., and S. Moreshet, 1994: Global radiation climate change at seven sites remote from surface sources of pollution. Climatic Change, 26, 89103, https://doi.org/10.1007/BF01094010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoy, P. C., and Coauthors, 2013: A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agric. For. Meteor., 171–172, 137152, https://doi.org/10.1016/j.agrformet.2012.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taha, H., 1997: Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build., 25, 99103, https://doi.org/10.1016/S0378-7788(96)00999-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • United Nations, 2019: World Urbanization Prospects: The 2018 Revision. United Nations, 103 pp.

  • Wang, L., Z. Gao, S. Miao, X. Guo, T. Sun, M. Liu, and D. Li, 2015: Contrasting characteristics of the surface energy balance between the urban and rural areas of Beijing. Adv. Atmos. Sci., 32, 505514, https://doi.org/10.1007/s00376-014-3222-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., D. Li, W. Liao, A. Rigden, and W. Wang, 2019: Contrasting evaporative responses of ecosystems to heatwaves traced to the opposing roles of vapor pressure deficit and surface resistance. Water Resour. Res., 55, 45504563, https://doi.org/10.1029/2019WR024771.

    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Guo, B. Qiu, Y. Liu, J. Sun, and A. Ding, 2017: Quantifying the contribution of land use change to surface temperature in the lower reaches of the Yangtze River. Atmos. Chem. Phys., 17, 49894996, https://doi.org/10.5194/acp-17-4989-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yap, D., and T. R. Oke, 1974: Sensible heat fluxes over an urban area—Vancouver, B.C. J. Appl. Meteor., 13, 880890, https://doi.org/10.1175/1520-0450(1974)013<0880:SHFOAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., X. Lee, R. B. Smith, and K. Oleson, 2014: Strong contributions of local background climate to urban heat islands. Nature, 511, 216219, https://doi.org/10.1038/nature13462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., M. Oppenheimer, Q. Zhu, J. W. Baldwin, K. L. Ebi, E. Bou-Zeid, K. Guan, and X. Liu, 2018: Interactions between urban heat islands and heat waves. Environ. Res. Lett., 13, 034003, https://doi.org/10.1088/1748-9326/aa9f73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, D., L. Zhang, D. Li, D. Huang, and C. Zhu, 2016: Climate–vegetation control on the diurnal and seasonal variations of surface urban heat islands in China. Environ. Res. Lett., 11, 074009, https://doi.org/10.1088/1748-9326/11/7/074009.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 195 195 38
Full Text Views 66 66 5
PDF Downloads 78 78 9

Surface Urban Heat and Cool Islands and Their Drivers: An Observational Study in Nanjing, China

View More View Less
  • 1 Department of Earth and Environment, Boston University, Boston, Massachusetts
  • 2 School of Atmospheric Sciences, Nanjing University, Nanjing, China
© Get Permissions
Restricted access

Abstract

Urban heat islands (UHIs) are caused by a multitude of changes induced by urbanization. However, the relative importance of biophysical and atmospheric factors in controlling the UHI intensity remains elusive. In this study, we quantify the magnitude of surface UHIs (SUHIs), or surface urban cool islands (SUCIs), and elucidate their biophysical and atmospheric drivers on the basis of observational data collected from one urban site and two rural grassland sites in and near the city of Nanjing, China. Results show that during the daytime a strong SUCI effect is observed when the short grassland site is used as the reference site whereas a moderate SUHI effect is observed when the tall grassland is used as the reference site. We find that the former is mostly caused by the lower aerodynamic resistance for convective heat transfer at the urban site and the latter is primarily caused by the higher surface resistance for evapotranspiration at the urban site. At night, SUHIs are observed when either the short or the tall grassland site is used as the reference site and are predominantly caused by the stronger release of heat storage at the urban site. In general, the magnitude of SUHI is much weaker, and even becomes SUCI during daytime, with the short grassland site being the reference site because of its larger aerodynamic resistance. The study highlights that the magnitude of SUHIs and SUCIs is mostly controlled by urban–rural differences of biophysical factors, with urban–rural differences of atmospheric conditions playing a minor role.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-20-0089.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dan Li, lidan@bu.edu

Abstract

Urban heat islands (UHIs) are caused by a multitude of changes induced by urbanization. However, the relative importance of biophysical and atmospheric factors in controlling the UHI intensity remains elusive. In this study, we quantify the magnitude of surface UHIs (SUHIs), or surface urban cool islands (SUCIs), and elucidate their biophysical and atmospheric drivers on the basis of observational data collected from one urban site and two rural grassland sites in and near the city of Nanjing, China. Results show that during the daytime a strong SUCI effect is observed when the short grassland site is used as the reference site whereas a moderate SUHI effect is observed when the tall grassland is used as the reference site. We find that the former is mostly caused by the lower aerodynamic resistance for convective heat transfer at the urban site and the latter is primarily caused by the higher surface resistance for evapotranspiration at the urban site. At night, SUHIs are observed when either the short or the tall grassland site is used as the reference site and are predominantly caused by the stronger release of heat storage at the urban site. In general, the magnitude of SUHI is much weaker, and even becomes SUCI during daytime, with the short grassland site being the reference site because of its larger aerodynamic resistance. The study highlights that the magnitude of SUHIs and SUCIs is mostly controlled by urban–rural differences of biophysical factors, with urban–rural differences of atmospheric conditions playing a minor role.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-20-0089.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dan Li, lidan@bu.edu

Supplementary Materials

    • Supplemental Materials (PDF 200 KB)
Save