• Ávila, E. E., R. E. Burgesser, N. E. Castellano, A. B. Collier, R. H. Compagnucci, and A. R. W. Hughes, 2010: Correlations between deep convection and lightning activity on a global scale. J. Atmos. Sol.-Terr. Phys., 72, 11141121, https://doi.org/10.1016/j.jastp.2010.07.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, S. E., and A. D. Zelinsky, 2018: National Hurricane Center Tropical Cyclone Report: Hurricane Harvey. NOAA/NWS Rep. AL092017, 76 pp., https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf.

  • Brown, B. R., M. M. Bell, and A. J. Frambach, 2016: Validation of simulated hurricane drop size distributions using polarimetric radar. Geophys. Res. Lett., 43, 910917, https://doi.org/10.1002/2015GL067278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., D. Zrnić, and G. F. Zhang, 2017: Winter precipitation liquid–ice phase transitions revealed with polarimetric radar and 2DVD observations in central Oklahoma. J. Appl. Meteor. Climatol., 56, 13451363, https://doi.org/10.1175/JAMC-D-16-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., A. Ryzhkov, D. Zrnić, and G. F. Zhang, 2018: Polarimetric radar relations for quantification of snow based on disdrometer data. J. Appl. Meteor. Climatol., 57, 103120, https://doi.org/10.1175/JAMC-D-17-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, W. Y., T. C. C. Wang, and P. L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 19731993, https://doi.org/10.1175/2009JTECHA1236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, W. Y., W. C. Lee, and Y. C. Liou, 2015: The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/TiMREX. Mon. Wea. Rev., 143, 317340, https://doi.org/10.1175/MWR-D-14-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B. J., Y. Wang, and J. Ming, 2012: Microphysical characteristics of the raindrop size distribution in Typhoon Morakot (2009). J. Trop. Meteor., 18, 162171, https://doi.org/10.3969/j.issn.1006-8775.2012.02.006.

    • Search Google Scholar
    • Export Citation
  • Cullen, M., 2013: The Houston Lightning Mapping Array: Network installation and preliminary analysis. M.S. thesis, Dept. of Atmospheric Sciences, Texas A&M University, 74 pp.

  • Czajkowski, J., and J. Done, 2014: As the wind blows? Understanding hurricane damages at the local level through a case study analysis. Wea. Climate Soc., 6, 202217, https://doi.org/10.1175/WCAS-D-13-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, J., X. Yu, D. Rosenfeld, and X. H. Xu, 2007: Microphysical effects of cloud seeding in supercooled stratiform clouds observed from NOAA satellite. Acta Meteor. Sin., 21, 224233.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, and M. R. Kumjian, 2015: Does wind shear cause hydrometeor size sorting? J. Atmos. Sci., 72, 340348, https://doi.org/10.1175/JAS-D-14-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and M. R. Kumjian, 2017: Examining polarimetric radar observations of bulk microphysical structures and their relation to vortex kinematics in Hurricane Arthur (2014). Mon. Wea. Rev., 145, 45214541, https://doi.org/10.1175/MWR-D-17-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and M. R. Kumjian, 2018: Examining storm asymmetries in Hurricane Irma (2017) using polarimetric radar observations. Geophys. Res. Lett., 45, 13 51313 522, https://doi.org/10.1029/2018GL080739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, https://doi.org/10.1029/2009JD012352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2018: Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359, 411418, https://doi.org/10.1126/science.aan8461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Y. C., and M. M. Bell, 2019: Microphysical characteristics of an asymmetric eyewall in major Hurricane Harvey (2017). Geophys. Res. Lett., 46, 461471, https://doi.org/10.1029/2018GL080770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadelmawla, E. S., M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, 2002: Roughness parameters. J. Mater. Process. Technol., 123, 133145, https://doi.org/10.1016/S0924-0136(02)00060-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goren, T., and D. Rosenfeld, 2012: Satellite observations of ship emission induced transitions from broken to closed cell marine stratocumulus over large areas. J. Geophys. Res., 117, D17206, https://doi.org/10.1029/2012JD017981.

    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, and A. V. Ryzhkov, 2018: A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol., 57, 3150, https://doi.org/10.1175/JAMC-D-17-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacovelli, D., 1999: The Saffir/Simpson Hurricane Scale: An interview with Dr. Robert Simpson. Mariners Weather Log, Vol. 43, National Weather Service, NOAA, Silver Spring, MD, 10–12, https://vos.noaa.gov/MWL/apr1999.pdf.

  • Ilotoviz, E., A. P. Khain, N. Benmoshe, V. T. J. Phillips, and A. V. Ryzhkov, 2016: Effect of aerosols on freezing drops, hail, and precipitation in a midlatitude storm. J. Atmos. Sci., 73, 109144, https://doi.org/10.1175/JAS-D-14-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Justice, C. O., J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, 2002: An overview of MODIS Land data processing and product status. Remote Sens. Environ., 83, 315, https://doi.org/10.1016/S0034-4257(02)00084-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., V. Phillips, N. Benmoshe, and A. Pokrovsky, 2012: The role of small soluble aerosols in the microphysics of deep maritime clouds. J. Atmos. Sci., 69, 27872807, https://doi.org/10.1175/2011JAS3649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., and Coauthors, 2014: Ultrafine particles in cities. Environ. Int., 66, 110, https://doi.org/10.1016/j.envint.2014.01.013.

  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, https://doi.org/10.1175/JAS-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2006: The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius. Atmos. Chem. Phys., 6, 28872894, https://doi.org/10.5194/acp-6-2887-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2008: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmos. Chem. Phys., 8, 67396753, https://doi.org/10.5194/acp-8-6739-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., J. D. Kepert, and T. D. Keenan, 2008: Polarimetric radar observations of the persistently asymmetric structure of Tropical Cyclone Ingrid. Mon. Wea. Rev., 136, 616630, https://doi.org/10.1175/2007MWR2077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A., 2018: A microphysical analysis of the stratiform rain region of mesoscale convective systems using polarimetric radar and in situ aircraft measurements. M.S. thesis, Dept. of Meteorology, University of Oklahoma, 155 pp.

  • NOAA, 2018: How many direct hits by hurricanes of various categories have affected each state? Frequently Asked Questions about Hurricanes, NHC, http://www.aoml.noaa.gov/hrd/tcfaq/E19.html.

  • Peckham, S. E., T. G. Smirnova, S. G. Benjamin, J. M. Brown, and J. S. Kenyon, 2016: Implementation of a digital filter initialization in the WRF model and its application in the Rapid Refresh. Mon. Wea. Rev., 144, 99106, https://doi.org/10.1175/MWR-D-15-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., and A. Khain, 2018: Theoretical analysis of the entrainment-mixing process at cloud boundaries. Part I: Droplet size distributions and humidity within the interface zone. J. Atmos. Sci., 75, 20492064, https://doi.org/10.1175/JAS-D-17-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proctor, F., and G. Switzer, 2016: Numerical simulation of HIWC conditions with the terminal area simulation system. Eighth AIAA Atmospheric and Space Environments Conf., Washington, DC, American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.2016-4203.

    • Crossref
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze, 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, https://doi.org/10.1002/2014GL061767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2018: Cloud-aerosol-precipitation interactions based of satellite retrieved vertical profiles of cloud microstructure. Remote Sensing of Aerosols, Clouds, and Precipitation, T. Islam et al., Eds., Elsevier, 129–152.

    • Crossref
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113, D04208, https://doi.org/10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. Carrio, I. Ginis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 9871001, https://doi.org/10.1175/BAMS-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., G. Liu, X. Yu, Y. Zhu, J. Dai, X. Xu, and Z. Yue, 2014: High-resolution (375 m) cloud microstructure as seen from the NPP/VIIRS satellite imager. Atmos. Chem. Phys., 14, 24792496, https://doi.org/10.5194/acp-14-2479-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Coauthors, 2016: Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers. Proc. Natl. Acad. Sci. USA, 113, 58285834, https://doi.org/10.1073/pnas.1514044113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., S. J. Goodman, K. S. Virts, and E. C. Bruning, 2019: Initial geostationary lightning mapper observations. Geophys. Res. Lett., 46, 10971104, https://doi.org/10.1029/2018GL081052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and D. Zrnić, 2019: Radar Polarimetry for Weather Observations. Springer International, 486 pp.

  • Ryzhkov, A., S. E. Giangrande, and T. J. Schuur, 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, https://doi.org/10.1175/JAM2213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., P. F. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Tromel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shpund, J., A. Khain, and D. Rosenfeld, 2019: Effects of sea spray on the dynamics and microphysics of an idealized tropical cyclone. J. Atmos. Sci., 76, 22132234, https://doi.org/10.1175/JAS-D-18-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S., and R. Berg, 2019: National Hurricane Center Tropical Cyclone Report: Hurricane Florence. NOAA/NWS Rep. AL062018, 98 pp., https://www.nhc.noaa.gov/data/tcr/AL062018_Florence.pdf.

  • Tobin, D. M., and M. R. Kumjian, 2017: Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transitions. Wea. Forecasting, 32, 20652082, https://doi.org/10.1175/WAF-D-17-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, E. Habib, and T. Kasparis, 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136, 16691685, https://doi.org/10.1175/2007MWR2122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tourville, N., G. Stephens, M. DeMaria, and D. Vane, 2015: Remote sensing of tropical cyclones: Observations from CloudSat and A-Train profilers. Bull. Amer. Meteor. Soc., 96, 609622, https://doi.org/10.1175/BAMS-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and L. G. Lee, 2002: Rainfall characteristics associated with the remnants of Tropical Storm Helene in upstate South Carolina. Wea. Forecasting, 17, 12571267, https://doi.org/10.1175/1520-0434(2002)017<1257:RCAWTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M. J., K. Zhao, M. Xue, G. F. Zhang, S. Liu, L. Wen, and G. Chen, 2016: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos., 121, 12 41512 433, https://doi.org/10.1002/2016JD025307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94, 13 15113 167, https://doi.org/10.1029/JD094iD11p13151.

  • Wilson, J. W., and D. M. Pollock, 1974: Rainfall measurements during Hurricane Agnes by 3 overlapping radars. J. Appl. Meteor., 13, 835844, https://doi.org/10.1175/1520-0450(1974)013<0835:RMDHAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., and Coauthors, 2018: Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar. Mon. Wea. Rev., 146, 21472159, https://doi.org/10.1175/MWR-D-17-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, S. N., and B. J. Soden, 2017: Signatures of tropical cyclone intensification in satellite measurements of ice and liquid water content. Mon. Wea. Rev., 145, 40814091, https://doi.org/10.1175/MWR-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W. X., S. A. Rutledge, and W. J. Zhang, 2017: Relationships between total lightning, deep convection, and tropical cyclone intensity change. J. Geophys. Res. Atmos., 122, 70477063, https://doi.org/10.1002/2017JD027072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C. K., and C. L. Tsai, 2013: Structural and surface features of arc-shaped radar echoes along an outer tropical cyclone rainband. J. Atmos. Sci., 70, 5672, https://doi.org/10.1175/JAS-D-12-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Villarini, G. A. Vecchi, and J. A. Smith, 2018: Urbanization exacerbated the rainfall and flooding caused by Hurricane Harvey in Houston. Nature, 563, 384388, https://doi.org/10.1038/s41586-018-0676-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y. T., and D. Rosenfeld, 2015: Linear relation between convective cloud base height and updrafts and application to satellite retrievals. Geophys. Res. Lett., 42, 64856491, https://doi.org/10.1002/2015GL064809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y. N., D. Rosenfeld, X. Yu, G. H. Liu, J. Dai, and X. H. Xu, 2014: Satellite retrieval of convective cloud base temperature based on the NPP/VIIRS Imager. Geophys. Res. Lett., 41, 13081313, https://doi.org/10.1002/2013GL058970.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 122 122 15
Full Text Views 60 60 8
PDF Downloads 58 58 10

Synergetic Use of the WSR-88D Radars, GOES-R Satellites, and Lightning Networks to Study Microphysical Characteristics of Hurricanes

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR, National Severe Storms Laboratory, Norman, Oklahoma
  • 2 Department of Atmospheric Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
  • 3 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR, National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

This study analyzes the microphysics and precipitation pattern of Hurricanes Harvey (2017) and Florence (2018) in both the eyewall and outer rainband regions. From the retrievals by a satellite red–green–blue scheme, the outer rainbands show a strong convective structure while the inner eyewall has less convective vigor (i.e., weaker upper-level reflectivities and electrification), which may be related to stronger vertical wind shear that hinders fast vertical motions. The WSR-88D column-vertical profiles further confirm that the outer rainband clouds have strong vertical motion and large ice-phase hydrometeor formation aloft, which correlates well with 3D Lightning Mapping Array source counts in height and time. From the results from this study, it is determined that the inner eyewall region is dominated by warm rain, whereas the external rainband region contains intense mixed-phase precipitation. External rainbands are defined here as those that reside outside of the main hurricane circulation, associated with surface tropical storm wind speeds. The synergy of satellite and radar dual-polarization parameters is instrumental in distinguishing between the key microphysical features of intense convective rainbands and the warm-rain-dominated eyewall regions within the hurricanes. Substantial amounts of ice aloft and intense updrafts in the external rainbands are indicative of heavy surface precipitation, which can have important implications for severe weather warnings and quantitative precipitation forecasts. The novel part of this study is to combine ground-based radar measurement with satellite observations to study hurricane microphysical structure from surface to cloud top so as to fill in the gaps between the two observational techniques.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-19-0122.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiaxi Hu, jiaxi.hu@noaa.gov

Abstract

This study analyzes the microphysics and precipitation pattern of Hurricanes Harvey (2017) and Florence (2018) in both the eyewall and outer rainband regions. From the retrievals by a satellite red–green–blue scheme, the outer rainbands show a strong convective structure while the inner eyewall has less convective vigor (i.e., weaker upper-level reflectivities and electrification), which may be related to stronger vertical wind shear that hinders fast vertical motions. The WSR-88D column-vertical profiles further confirm that the outer rainband clouds have strong vertical motion and large ice-phase hydrometeor formation aloft, which correlates well with 3D Lightning Mapping Array source counts in height and time. From the results from this study, it is determined that the inner eyewall region is dominated by warm rain, whereas the external rainband region contains intense mixed-phase precipitation. External rainbands are defined here as those that reside outside of the main hurricane circulation, associated with surface tropical storm wind speeds. The synergy of satellite and radar dual-polarization parameters is instrumental in distinguishing between the key microphysical features of intense convective rainbands and the warm-rain-dominated eyewall regions within the hurricanes. Substantial amounts of ice aloft and intense updrafts in the external rainbands are indicative of heavy surface precipitation, which can have important implications for severe weather warnings and quantitative precipitation forecasts. The novel part of this study is to combine ground-based radar measurement with satellite observations to study hurricane microphysical structure from surface to cloud top so as to fill in the gaps between the two observational techniques.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-19-0122.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiaxi Hu, jiaxi.hu@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 318 KB)
Save