• Auer, A. H., Jr., and D. L. Veal, 1970: An investigation of liquid water-ice content budgets within orographic cap clouds. J. Atmos. Res., 4, 5964.

    • Search Google Scholar
    • Export Citation
  • Breed, D., R. Rasmussen, C. Weeks, B. Boe, and T. Deshler, 2014: Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP). J. Appl. Meteor. Climatol., 53, 282299, https://doi.org/10.1175/JAMC-D-13-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1995: Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols. Atmos. Res., 38, 6399, https://doi.org/10.1016/0169-8095(94)00088-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1997: Report to North Dakota Atmospheric Resource Board and Weather Modification Incorporated on tests of the ice nucleating ability of aerosols produced by the Lohse Airborne Generator. Colorado State University Dept. of Atmospheric Science Rep., 15 pp.

  • DeMott, P. J., and et al. , 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirks, R. A., 1973: The precipitation efficiency of orographic clouds. J. Atmos. Res, 7, 177184.

  • Eidhammer, T., V. Grubisic, R. Rasmussen, and K. Ikeda, 2018: Winter precipitation efficiency of mountain ranges in the Colorado Rockies under climate change. J. Geophys. Res. Atmos., 123, 25732590, https://doi.org/10.1002/2017JD027995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., and et al. , 2018: Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci., 115, 11681173, https://doi.org/10.1073/pnas.1716995115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., and et al. , 2020: Making snow—Quantifying snowfall from orographic cloud seeding. Proc. Natl. Acad. Sci., 117, 51905195, https://doi.org/10.1073/pnas.1917204117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., R. Bruintjes, R. Serafin, H. Orville, B. Boe, W. Cotton, and J. Warburton, 2005: Weather modification: Finding common ground. Bull. Amer. Meteor. Soc., 86, 647656, https://doi.org/10.1175/BAMS-86-5-647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and et al. , 2013: The AgI Seeding Cloud Impact Investigation (ASCII) campaign 2012: Overview and preliminary results. J. Wea. Modif., 45, 2443.

    • Search Google Scholar
    • Export Citation
  • Griffith, D. A., M. E. Solak, D. P. Yorty, A. W. Huggins, D. Koracin, 2006: Level II Weather Modification Feasibility Study for the Salt River and Wyoming Ranges, Wyoming. Wyoming Water Development Commission Final Rep., 265 pp., http://library.wrds.uwyo.edu/wwdcrept/Wyoming/Salt_River_Wyoming_Range-Level_II_Weather_Modification_Feasibility_Study-Final_Report-2006.pdf.

  • Henry, A. J., 1919: Increase of precipitation with altitude. Mon. Wea. Rev., 47, 3341, https://doi.org/10.1175/1520-0493(1919)47<33:IOPWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., and et al. , 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477, https://doi.org/10.1016/j.atmosres.2010.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. B., and D. Marks, 2004: The detection and correction of snow-water equivalent pressure sensor errors. Hydrol. Processes, 18, 35133525, https://doi.org/10.1002/hyp.5795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., K. Ikeda, G. Thompson, R. Rasmussen, and J. Dudhia, 2011: High-resolution simulations of wintertime precipitation in the Colorado Headwaters region: Sensitivity to physics parameterizations. Mon. Wea. Rev., 139, 35333553, https://doi.org/10.1175/MWR-D-11-00009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and et al. , 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J., M. Hughes, E. Gutmann, and S. Kapnick, 2019: Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull. Amer. Meteor. Soc., 100, 24732490, https://doi.org/10.1175/BAMS-D-19-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonough, F., and et al. , 2017: Weather modification level III feasibility study Laramie Range siting and design. Wyoming Water Development Commission Final Rep., 222 pp., http://wwdc.state.wy.us/weathermod/Laramie_Range_Final_Report_5-4-17.pdf.

  • National Research Council, 2003: Critical Issues in Weather Modification Research. National Academies Press, 123 pp., https://doi.org/10.17226/10829.

    • Crossref
    • Export Citation
  • Niu, G.-Y., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and G. Vali, 1983: Observations of liquid water in orographic clouds over Elk mountain. J. Atmos. Sci., 40, 13001312, https://doi.org/10.1175/1520-0469(1983)040<1300:OOLWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., P. K. Smolarkiewicz, and J. Warner, 1989: On the dynamics of Hawaiian cloud bands: Comparison of model results with observations and island climatology. J. Atmos. Sci., 46, 15891608, https://doi.org/10.1175/1520-0469(1989)046<1589:OTDOHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and et al. , 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and et al. , 2012: How well are we measuring snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and et al. , 2014: Climate change impacts on the water balance of the Colorado headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, https://doi.org/10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and et al. , 2018: Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling. J. Appl. Meteor. Climatol., 57, 26392660, https://doi.org/10.1175/JAMC-D-17-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and et al. , 2019: Wintertime orographic cloud seeding: A review. J. Appl. Meteor. Climatol., 58, 21172140, https://doi.org/10.1175/JAMC-D-18-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritzman, J., T. Deshler, K. Ikeda, and R. Rasmussen, 2015: Estimating the fraction of winter orographic precipitation produced under conditions meeting the seeding criteria for the Wyoming Weather Modification Pilot Project. J. Appl. Meteor. Climatol., 54, 12021215, https://doi.org/10.1175/JAMC-D-14-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, V. J., 1946: The production of ice crystals in a cloud of supercooled water droplets. Science, 104, 457459, https://doi.org/10.1126/science.104.2707.457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty, 1999: Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, https://doi.org/10.1029/1999WR900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, and A. Frei, 2001: Characteristics of large snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data. Water Resour. Res., 37, 675688, https://doi.org/10.1029/2000WR900307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, https://doi.org/10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 18721905, https://doi.org/10.1175/1520-0469(1988)045<1872:OTDOHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spreen, W. C., 1947: A determination of the effect of topography upon precipitation. Trans. Amer. Geophys. Union, 28, 285290, https://doi.org/10.1029/TR028i002p00285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., B. Boe, B. Geerts, M. J. Manton, S. Parkinson, and R. Rasmussen, 2015a: The future of winter orographic cloud seeding, a view from scientists and stakeholders. Bull. Amer. Meteor. Soc., 96, 21952198, https://doi.org/10.1175/BAMS-D-15-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., L. Xue, D. Breed, C. Weeks, K. Ikeda, D. Axisa, and R. Rasmussen, 2015b: Evaluation of weather modification modeling in the Wind River Range, WY. U.S. Bureau of Reclamation Final Rep., 124 pp., https://www.usbr.gov/research/docs/WRR.pdf.

  • Tessendorf, S. A., and et al. , 2016: Wyoming Level II Weather Modification Feasibility–Wyoming Range Level II Phase II Study. Wyoming Water Development Commission Final Rep., 194 pp., http://wwdc.state.wy.us/weathermod/NCAR-Weather_Modification_Feasibility_Wyoming_Range_Study-Level_II-Final_Report-5_3_16.pdf.

  • Tessendorf, S. A., and et al. , 2017a: Wyoming Level II Weather Modification–Bighorn Mountains Siting and Design Study. Wyoming Water Development Commission Final Rep., 288 pp., http://wwdc.state.wy.us/weathermod/BighornMtns_Final_Report_5-4-17.pdf.

  • Tessendorf, S. A., and et al. , 2017b: Wyoming Level II Weather Modification–Medicine Bow/Sierra Madre Ranges Final Design and Permitting Study. Wyoming Water Development Commission Final Rep., 299 pp., http://library.wrds.uwyo.edu/wwdcrept/Wyoming/Medicine_Bow_Sierra_Madre-Weather_Modification_Final_Design_Permitting-Final_Report-2017.pdf.

  • Tessendorf, S. A., and et al. , 2019: A transformational approach to winter orographic weather modification research: The SNOWIE project. Bull. Amer. Meteor. Soc., 100, 7192, https://doi.org/10.1175/BAMS-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1947: The nucleation of ice formation by silver iodide. J. Appl. Phys., 18, 593595, https://doi.org/10.1063/1.1697813.

  • Weather Modification Inc., 2005: Wyoming Level II Weather Modification Feasibility Study. Wyoming Water Development Commission Final Rep., 151 pp., http://library.wrds.uwyo.edu/wwdcrept/Wyoming/Wyoming-Level_II_Weather_Modification_Feasibility_Study-Final_Report-2005.pdf.

  • Xue, L., and et al. , 2013a: Implementation of a silver iodide cloud seeding parameterization in WRF: Part I: Model description and idealized 2D sensitivity tests. J. Appl. Meteor. Climatol., 52, 14331457, https://doi.org/10.1175/JAMC-D-12-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., S. A. Tessendorf, E. Nelson, R. Rasmussen, D. Breed, S. Parkinson, P. Holbrook, and D. Blestrud, 2013b: Implementation of a silver iodide cloud seeding parameterization in WRF: Part II: 3D simulations of actual seeding events and sensitivity tests. J. Appl. Meteor. Climatol., 52, 14581476, https://doi.org/10.1175/JAMC-D-12-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., B. E. Goodison, J. R. Metcalfe, V. S. Golubev, R. Bates, T. Pangburn, and C. L. Hanson, 1998: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15, 5468, https://doi.org/10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 148 148 19
Full Text Views 41 41 9
PDF Downloads 51 51 11

An Assessment of Winter Orographic Precipitation and Cloud-Seeding Potential in Wyoming

View More View Less
  • 1 Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This paper presents an evaluation of the precipitation patterns and seedability of orographic clouds in Wyoming using SNOTEL precipitation data and a high-resolution multiyear model simulation over an 8-yr period. A key part of assessing the potential for cloud seeding is to understand the natural precipitation patterns and how often atmospheric conditions and clouds meet cloud-seeding criteria. The analysis shows that high-resolution model simulations are useful tools for studying patterns of orographic precipitation and establishing the seedability of clouds by providing information that is either missed by or not available from current observational networks. This study indicates that the ground-based seeding potential in some mountain ranges in Wyoming is limited by flow blocking and/or prevailing winds that were not normal to the barrier to produce upslope flow. Airborne seeding generally had the most potential for all of the mountain ranges that were studied.

Corresponding author: Sarah A. Tessendorf, saraht@ucar.edu

Abstract

This paper presents an evaluation of the precipitation patterns and seedability of orographic clouds in Wyoming using SNOTEL precipitation data and a high-resolution multiyear model simulation over an 8-yr period. A key part of assessing the potential for cloud seeding is to understand the natural precipitation patterns and how often atmospheric conditions and clouds meet cloud-seeding criteria. The analysis shows that high-resolution model simulations are useful tools for studying patterns of orographic precipitation and establishing the seedability of clouds by providing information that is either missed by or not available from current observational networks. This study indicates that the ground-based seeding potential in some mountain ranges in Wyoming is limited by flow blocking and/or prevailing winds that were not normal to the barrier to produce upslope flow. Airborne seeding generally had the most potential for all of the mountain ranges that were studied.

Corresponding author: Sarah A. Tessendorf, saraht@ucar.edu
Save