• Arakawa, A., J.-H. Jung, and C.-M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, https://doi.org/10.5194/acp-11-3731-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avolio, E., S. Federico, M. M. Miglietta, T. Lo Feudo, C. R. Calidonna, and A. M. Sempreviva, 2017: Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign. Atmos. Res., 192, 5871, https://doi.org/10.1016/j.atmosres.2017.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balzarini, A., and Coauthors, 2014: Sensitivity analysis of PBL schemes by comparing WRF model and experimental data. Geosci. Model Dev. Discuss., 7, 61336171, https://doi.org/10.5194/gmdd-7-6133-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banks, R. F., and J. M. Baldasano, 2016: Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain. Sci. Total Environ., 572, 98113, https://doi.org/10.1016/j.scitotenv.2016.07.167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borge, R., V. Alexandrov, J. J. Del Vas, J. Lumbreras, and E. Rodriguez, 2008: A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos. Environ., 42, 85608574, https://doi.org/10.1016/j.atmosenv.2008.08.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camuffo, D., 2014: Atmospheric stability and pollutant dispersion. Microclimate for Cultural Heritage, 2nd ed. Elsevier, 245282, https://doi.org/10.1016/B978-0-444-63296-8.00008-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, F.-Y., S.-H. Chin, and T.-H. Liu, 2012: The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area. Atmos. Environ., 54, 714727, https://doi.org/10.1016/j.atmosenv.2012.01.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, https://doi.org/10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuchiara, C. G., X. Li, J. Carvalho, and B. Rappenglück, 2014: Intercomparison of planetary boundary layer parameterization and its impacts on surface ozone concentration in the WRF/Chem Model for a case study in Houston/Texas. Atmos. Environ., 96, 175185, https://doi.org/10.1016/j.atmosenv.2014.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, R., and Coauthors, 2010: A framework for evaluating regional scale numerical photochemical modelling systems. Environ. Fluid Mech., 10, 471489, https://doi.org/10.1007/s10652-009-9163-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • District of Kitimat, 2020: Current major projects. https://www.kitimat.ca/en/business-and-development/current-major-projects.aspx.

  • Draxler, R. R., and T. Chai, 2014: Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 7, 12471250, https://doi.org/10.5194/gmd-7-1247-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2019: ERA5 reanalysis. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 30 January 2019, https://doi.org/10.5065/D6X34W69.

    • Crossref
    • Export Citation
  • Emery, C. A., E. Tai, and G. Yarwood, 2001: Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. Texas Natural Resource Conservation Commission Rep., 235 pp., https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/mm/EnhancedMetModelingAndPerformanceEvaluation.pdf.

  • Environment and Climate Change Canada, 2019: Canadian climate normals 1981-2010 station data. Government of Canada, accessed 20 July 2019, http://climate.weather.gc.ca/climate_normals/.

  • García-Díez, M., J. Fernández, L. Fita, and C. Yagüe, 2013: Seasonal dependence of WRF Model biases and sensitivity to PBL schemes over Europe. Quart. J. Roy. Meteor. Soc., 139, 501514, https://doi.org/10.1002/qj.1976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunwani, P., and M. Mohan, 2017: Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India. Atmos. Res., 194, 4365, https://doi.org/10.1016/j.atmosres.2017.04.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hariprasad, K. B. R. R., C. V. Srinivas, A. B. Singh, S. V. B. Rao, R. Baskaran, and B. Venkatraman, 2014: Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmos. Res., 145–146, 2744, https://doi.org/10.1016/j.atmosres.2014.03.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hedley, M., and D. L. Singleton, 1997: Evaluation of an air quality simulation of the Lower Fraser Valley–I. Meteorology. Atmos. Environ., 31, 16051615, https://doi.org/10.1016/S1352-2310(96)00339-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 14811496, https://doi.org/10.1002/qj.665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horvath, K., D. Koracin, R. Vellore, J. Jiang, and R. Belu, 2012: Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res., 117, D11111, https://doi.org/10.1029/2012JD017432.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note 437, 61 pp., https://repository.library.noaa.gov/view/noaa/11409.

  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF Model. J. Appl. Meteor. Climatol., 51, 300316, https://doi.org/10.1175/JAMC-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. Gonzalez-Rouco, J. Navarro, J. P. Montavez, and E. Garcia-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klock, R., and J. Mullock, 2000: The Weather of British Columbia: Graphic Area Forecast 31. NAV CANADA Rep., 221 pp., http://www.navcanada.ca/EN/media/Publications/Local%20Area%20Weather%20Manuals/LAWM-BC-EN.pdf.

  • Lange, O. S., 2003: Regional weather guides: Northern mainland coast. Living with Weather along the British Columbia Coast: The Veil of Chaos, Environment Canada, 174187.

    • Search Google Scholar
    • Export Citation
  • Mao, Q., L. Larry, L. L. Gautney, T. M. Cook, M. E. Jacobs, S. N. Smith, and J. J. Kelsoe, 2006: Numerical experiments on MM5–CMAQ sensitivity to various PBL schemes. Atmos. Environ., 40, 30923110, https://doi.org/10.1016/j.atmosenv.2005.12.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, J.-F., and Coauthors, 2008: Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations. Meteor. Atmos. Phys., 99, 77103, https://doi.org/10.1007/s00703-007-0267-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misenis, C., and Y. Zhang, 2010: An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options. Atmos. Res., 97, 315334, https://doi.org/10.1016/j.atmosres.2010.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohan, M., and M. Gupta, 2018: Sensitivity of PBL parameterizations on PM10 and ozone simulation using chemical transport model WRF-Chem over a sub-tropical urban airshed in India. Atmos. Environ., 185, 5363, https://doi.org/10.1016/j.atmosenv.2018.04.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Mues, A., A. Laurer, A. Lupascu, M. Rupakheti, F. Kuik, and M. G. Lawrence, 2018: WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley. Geosci. Model Dev., 11, 20672091, https://doi.org/10.5194/gmd-11-2067-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., X. M. Hu, F. Q. Zhang, and J. E. Pleim, 2010: Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation. Mon. Wea. Rev., 138, 34003417, https://doi.org/10.1175/2010MWR3292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, J. B., J. S. Kenyon, W. M. Angevine, J. M. Brown, M. Pagowski, and K. Sušelj, 2019: A description of the MYNN-EDMF scheme and the coupling to other Components in WRF–ARW. NOAA Tech. Memo. OAR GSD 61, 37 pp., https://doi.org/10.25923/n9wm-be49.

    • Crossref
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, https://doi.org/10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reboredo, B., R. Arasa, and B. Codina, 2015: Evaluating sensitivity to different options and parameterizations of a coupled air quality modelling system over Bogotá, Colombia. Part I: WRF model configuration. Open J. Air Pollut., 4, 4764, https://doi.org/10.4236/ojap.2015.42006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rife, D. L., C. A. Davis, and Y. Liu, 2004: Predictability of low-level winds by mesoscale meteorological models. Mon. Wea. Rev., 132, 25532569, https://doi.org/10.1175/MWR2801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, https://doi.org/10.1175/MWR-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., http://doi.org/10.5065/1dfh-6p97.

    • Crossref
    • Export Citation
  • Talbot, C., E. Bou-Zeid, and J. Smith, 2012: Nested mesoscale large-eddy simulations with WRF: Performance in real test cases. J. Hydrometeor., 13, 14211441, https://doi.org/10.1175/JHM-D-11-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M. F., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/pdfpapers/69061.pdf.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., S. M. Robeson, and K. Matsuura, 2012: A refined index of model performance. Int. J. Climatol., 32, 20882094, https://doi.org/10.1002/joc.2419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, B., J. C. H. Fung, A. Chan, and A. Lau, 2012: Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J. Geophys. Res., 117, D12103, https://doi.org/10.1029/2011JD017080.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., Z. Pu, and X. Zhang, 2013: Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Wea. Forecasting, 28, 893914, https://doi.org/10.1175/WAF-D-12-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 120 120 32
Full Text Views 26 26 2
PDF Downloads 29 29 2

Meteorological Downscaling with WRF Model, Version 4.0, and Comparative Evaluation of Planetary Boundary Layer Schemes over a Complex Coastal Airshed

View More View Less
  • 1 Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, Canada
© Get Permissions
Restricted access

Abstract

Evaluation of downscaled meteorological information is crucial to identifying model behaviors that may propagate to end applications such as the simulation of local air quality. This study conducted and assessed yearlong simulations of hourly meteorological conditions over the Terrace–Kitimat Valley of northwestern British Columbia, Canada, at 1-km horizontal gridding for six PBL schemes in the Weather and Forecasting (WRF) Model, version 4.0. In terms of key surface meteorological variables that affect air quality, simulations over land demonstrated better skill for specific humidity and wind direction than for air temperature and wind speed. Spatial differences in modeled atmospheric properties and vertical profiles, especially for moisture content, were used to diagnose the relative capacity of each PBL scheme to represent pollutant dispersion and dilution. Stable conditions at night increased suppression of boundary layer mixing by the nonlocal Yonsei University (YSU) scheme when compared with suppression by the local eddy-diffusion component of the Asymmetric Convective Model, version 2 (ACM2), scheme, resulting in decreased wind speed and ambient temperature but moister air with the YSU scheme. The weakening of mixing by the Mellor–Yamada–Nakanishi–Niino (MYNN3) scheme with inland distance suggested that higher-order, nonlocal transport is sensitive to increasing topographic steepness toward the northern part of the valley. Disparities in mixing strengths among PBL schemes were greater in the summer when conditions were generally less stable with moist, warm air blowing inland than in winter when the valley channels cold, stable air from the interior. Increased convection in daytime led to greater entrainment of air from aloft and a thicker PBL with the YSU scheme than with the ACM2 scheme in summer while increasing countergradient transport in the MYNN3 scheme that reduces dilution.

Corresponding author: Chibuike Onwukwe, onwukwe@unbc.ca

Abstract

Evaluation of downscaled meteorological information is crucial to identifying model behaviors that may propagate to end applications such as the simulation of local air quality. This study conducted and assessed yearlong simulations of hourly meteorological conditions over the Terrace–Kitimat Valley of northwestern British Columbia, Canada, at 1-km horizontal gridding for six PBL schemes in the Weather and Forecasting (WRF) Model, version 4.0. In terms of key surface meteorological variables that affect air quality, simulations over land demonstrated better skill for specific humidity and wind direction than for air temperature and wind speed. Spatial differences in modeled atmospheric properties and vertical profiles, especially for moisture content, were used to diagnose the relative capacity of each PBL scheme to represent pollutant dispersion and dilution. Stable conditions at night increased suppression of boundary layer mixing by the nonlocal Yonsei University (YSU) scheme when compared with suppression by the local eddy-diffusion component of the Asymmetric Convective Model, version 2 (ACM2), scheme, resulting in decreased wind speed and ambient temperature but moister air with the YSU scheme. The weakening of mixing by the Mellor–Yamada–Nakanishi–Niino (MYNN3) scheme with inland distance suggested that higher-order, nonlocal transport is sensitive to increasing topographic steepness toward the northern part of the valley. Disparities in mixing strengths among PBL schemes were greater in the summer when conditions were generally less stable with moist, warm air blowing inland than in winter when the valley channels cold, stable air from the interior. Increased convection in daytime led to greater entrainment of air from aloft and a thicker PBL with the YSU scheme than with the ACM2 scheme in summer while increasing countergradient transport in the MYNN3 scheme that reduces dilution.

Corresponding author: Chibuike Onwukwe, onwukwe@unbc.ca
Save