• Abbritti, M., L. A. Gil-Alana, Y. Lovcha, and A. Moreno, 2016: Term structure persistence. J. Financ. Econ., 14, 331352, https://doi.org/10.1093/jjfinec/nbv003.

    • Search Google Scholar
    • Export Citation
  • Altissimo, F. B., P. Mojon, and P. Zaffaroni, 2009: Can aggregation explain the persistence of inflation? J. Monet. Econ., 56, 231241, https://doi.org/10.1016/j.jmoneco.2008.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avise, J., J. Chen, B. Lamb, C. Wiedinmyer, A. Guenther, E. Salathé, and C. Mass, 2009: Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes. Atmos. Chem. Phys., 9, 11111124, https://doi.org/10.5194/acp-9-1111-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. L., F. Dominici, L. Ebisu, S. L. Zeger, and J. M. Samet, 2007: Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ. Health Perspect., 115, 989995, https://doi.org/10.1289/ehp.9621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, J. E., and Coauthors, 2019: Particulate matter air pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis. PLOS Med., 16, e1002856, https://doi.org/10.1371/journal.pmed.1002856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beran, J., 1994: Statistics for Long-Memory Processes. 1st ed. Chapman and Hall/CRC Press, 315 pp.

  • Bhargava, A., 1986: On the theory of testing for unit roots in observed time series. Rev. Econ. Stud., 53, 369384, https://doi.org/10.2307/2297634.

  • Box, G. E. P., G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, 2015: Time Series Analysis: Forecasting and Control. 5th ed. John Wiley and Sons, 712 pp.

    • Search Google Scholar
    • Export Citation
  • Chelani, A., 2009: Statistical persistence analysis of hourly ground level ozone concentrations in Delhi. Atmos. Res., 92, 244250, https://doi.org/10.1016/j.atmosres.2008.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelani, A., 2016: Long-memory property in air pollutant concentrations. Atmos. Res., 171, 14, https://doi.org/10.1016/j.atmosres.2015.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., C. P. Barros, and L. A. Gil-Alana, 2016: The presence of air pollution in four mega-cities in China. Habitat Int., 56, 103108, https://doi.org/10.1016/j.habitatint.2016.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., J. Y. Oh, Y. S. Lee, K. H. Min, G. Y. Hur, S. Y. Lee, K. H. Kang, and J. J. Shim, 2018: Harmful impact of air pollution on severe acute exacerbation of chronic obstructive pulmonary disease: Particulate matter is hazardous. Int. J. Chronic Obstruct. Pulm. Dis., 13, 10531059, https://doi.org/10.2147/COPD.S156617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, S.-H., and J. W. Paisie, 2006: An evaluation of current PM2.5 conditions in the US. Atmos. Environ., 40, 206211, https://doi.org/10.1016/j.atmosenv.2005.11.080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clay, K., and N. Z. Muller, 2019: Recent increases in air pollution: Evidence and implications for mortality. NBER Working Paper 26381, 29 pp., https://doi.org/10.3386/w26381.

    • Crossref
    • Export Citation
  • Dahlhaus, R., 1989: Efficient parameter estimation for self-similar process. Ann. Stat., 17, 17491766, https://doi.org/10.1214/aos/1176347393.

  • De Jesus, A. L., M. M. Rahman, M. Mazaheri, H. Thompson, L. D. Knibbs, C. Jeong, and L. Morawska, 2019: Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other? Environ. Int., 129, 118135, https://doi.org/10.1016/j.envint.2019.05.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di, Q., H. Amini, L. Shi, I. Kloog, R. Silvern, J. Kelly, and J. Schwartz, 2019: An ensemble based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int., 130, 104909, https://doi.org/10.1016/j.envint.2019.104909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickey, D. A., and W. A. Fuller, 1979: Distributions of the estimators for autoregressive time series with a unit root. J. Amer. Stat. Assoc., 74, 427481, https://doi.org/10.2307/2286348.

    • Search Google Scholar
    • Export Citation
  • Diebold, F. X., and G. D. Rudebusch, 1991: On the power of Dickey-Fuller test against fractional alternatives. Econ. Lett., 35, 155160, https://doi.org/10.1016/0165-1765(91)90163-F.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diebold, F. X., and A. Inoue, 2001: Long memory and regime switching. J. Econ., 105, 131159, https://doi.org/10.1016/S0304-4076(01)00073-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dockery, D. W., C. A. Pope III, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris Jr., and F. E. Speizer, 1993: An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med., 329, 17531759, https://doi.org/10.1056/NEJM199312093292401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, G., T. J. Rothenberg, and J. H. Stock, 1996: Efficient tests for an autoregressive unit root. Econometrica, 64, 813836, https://doi.org/10.2307/2171846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EPA, 2011: The benefits and costs of the clean air act 1990 to 2020: EPA report to Congress. U.S. EPA Office of Air and Radiation Office of Policy Rep., 238 pp., https://www.epa.gov/sites/production/files/2015-07/documents/fullreport_rev_a.pdf.

  • EPA, 2018: Health and Environmental Effects of Particulate Matter (PM). Accessed 4 January 2020, https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm.

  • Gil-Alana, L. A., 2005: Statistical modeling of the temperatures in the Northern Hemisphere using fractional integration techniques. J. Climate, 18, 53575369, https://doi.org/10.1175/JCLI3543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil-Alaña, L. A., and P. M. Robinson, 1997: Testing of unit root and other nonstationary hypotheses in macroeconomic time series. J. Econ., 80, 241268, https://doi.org/10.1016/S0304-4076(97)00038-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granger, C. W. J., 1980: Long memory relationships and the aggregation of dynamic models. J. Econ., 14, 227238, https://doi.org/10.1016/0304-4076(80)90092-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granger, C. W. J., and N. Hyung, 2004: Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. J. Empirical Finance, 11, 399421, https://doi.org/10.1016/j.jempfin.2003.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hadley, O. L., 2017: Background PM2.5 source apportionment in the remote northwestern United States. Atmos. Environ., 167, 298308, https://doi.org/10.1016/j.atmosenv.2017.08.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassler, U., and J. Wolters, 1995: Long memory inflation rates. International evidence. J. Bus. Econ. Stat., 13, 3745.

  • Hurst, H., 1951: The long-term storage capacity of reservoirs. Trans. Amer. Soc. Civ. Eng., 116, 770799.

  • Ji, X., Y. Yao, and X. Long, 2018: What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy, 119, 458472, https://doi.org/10.1016/j.enpol.2018.04.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantelhardt, J. W., S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, 2002: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A, 316, 87114, https://doi.org/10.1016/S0378-4371(02)01383-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, and Y. Shin, 1992: Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econ., 54, 159178, https://doi.org/10.1016/0304-4076(92)90104-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D., and P. Schmidt, 1996: On the power of the KPSS test of stationarity against fractionally integrated alternatives. J. Econ., 73, 285302, https://doi.org/10.1016/0304-4076(95)01741-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., W. Lee, D. Kim, E. Kim, W. Myung, S. Kim, and H. Kim, 2019: Short-term PM2.5 exposure and emergency hospital admissions for mental disease. Environ. Res., 171, 313320, https://doi.org/10.1016/j.envres.2019.01.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, N., and Coauthors, 2019: A model for estimating the lifelong exposure to PM2.5 and NO2 and the application to population studies. Environ. Res., 178, 108629, https://doi.org/10.1016/j.envres.2019.108629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, H., W. T. Chen, and J. H. Seinfeld, 2006: Role of climate change in global predictions of future tropospheric ozone and aerosols. J. Geophys. Res., 111, D12304, https://doi.org/10.1029/2005JD006852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maji, S., S. Ghosh, and S. Ahmed, 2018: Association of air quality with respiratory and cardiovascular morbidity rate in Delhi, India. Int. J. Environ. Health Res., 28, 471490, https://doi.org/10.1080/09603123.2018.1487045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meraz, M., E. Rodriguez, R. Femat, J. C. Echeverria, and J. Alvarez-Ramirez, 2015: Statistical persistence of air pollutants (O3, SO2, NO2 and PM10) in Mexico City. Physica A, 427, 202217, https://doi.org/10.1016/j.physa.2015.02.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, N. Z., R. Mendelsohn, and W. Nordhaus, 2011: Environmental accounting for pollution in the United States economy. Amer. Econ. Rev., 101, 16491675, https://doi.org/10.1257/aer.101.5.1649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, D., K. Moustris, E. Petraki, D. Koulougliotis, and D. Cantzos, 2019: Fractal and long-memory traces in PM10 time series in Athens, Greece. Environments, 6, 29, https://doi.org/10.3390/environments6030029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, P. C. B., and P. Perron, 1988: Testing for a unit root in time series regression. Biometrika, 75, 335346, https://doi.org/10.1093/biomet/75.2.335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pillai, P., S. Babu, and K. Moorthy, 2002: A study of PM, PM10 and PM2.5 concentrations at a tropical coastal station. Atmos. Res., 61, 149167, https://doi.org/10.1016/S0169-8095(01)00136-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, C. A., and Coauthors, 2002: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287, 11321141, https://doi.org/10.1001/jama.287.9.1132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, C. A., M. Ezzati, and D. W. Dockery, 2009: Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med., 360, 376386, https://doi.org/10.1056/NEJMsa0805646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and R. J. Barthelmie, 1996: PM10 in Canada. Sci. Total Environ., 177, 5771, https://doi.org/10.1016/0048-9697(95)04865-0.

  • Pye, H. O. T., H. Liao, S. Wu, L. J. Mickley, D. J. Jacob, D. K. Henze, and J. H. Seinfeld, 2009: Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States. J. Geophys. Res., 114, D01205, https://doi.org/10.1029/2008JD010701.

    • Search Google Scholar
    • Export Citation
  • Racherla, P. N., and P. J. Adams, 2006: Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. J. Geophys. Res., 111, D24103, https://doi.org/10.1029/2005JD006939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, P. M., 1978: Statistical inference for a random coefficient autoregressive model. Scand. J. Stat., 5, 163168.

  • Robinson, P. M., 1994: Efficient tests of nonstationary hypotheses. J. Amer. Stat. Assoc., 89, 14201437, https://doi.org/10.1080/01621459.1994.10476881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, P., and P. C. B. Phillips, 1992: LM tests for a unit root in the presence of deterministic terms. Oxford Bull. Econ. Stat., 54, 257287, https://doi.org/10.1111/j.1468-0084.1992.tb00002.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shou, Y., Y. Huang, X. Zhu, C. Liu, Y. Hu, and H. Wang, 2019: A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. Ecotoxicol. Environ. Saf., 174, 344352, https://doi.org/10.1016/j.ecoenv.2019.02.086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tagaris, E., K. Manomaiphiboon, K. J. Liao, L. R. Leung, J. H. Woo, S. He, P. Amar, and A. G. Russell, 2007: Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States. J. Geophys. Res., 112, D14312, https://doi.org/10.1029/2006JD008262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tai, A. P. K., L. J. Mickley, and D. J. Jacob, 2010: Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ., 44, 39763984, https://doi.org/10.1016/j.atmosenv.2010.06.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, J. R., and J. R. Wilson, 2016: Multifractal detrended fluctuation analysis: Practical applications to financial time series. Math. Comput. Simul., 126, 6388, https://doi.org/10.1016/j.matcom.2016.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varotsos, C., J. Ondov, and M. Efstathiou, 2005: Scaling properties of air pollution in Athens, Greece and Baltimore, Maryland. Atmos. Environ., 39, 40414047, https://doi.org/10.1016/j.atmosenv.2005.03.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinmayr, G., M. Pedersen, M. Stafoggia, Z. J. Andersen, C. Galassi, J. Munkenast, and G. Nagel, 2018: Particulate matter air pollution components and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts of Air Pollution Effects (ESCAPE). Environ. Int., 120, 163171, https://doi.org/10.1016/j.envint.2018.07.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization, 2013a: Health Risks of Air Pollution in Europe—HRAPIE project: Recommendations for concentration-response functions for cost-benefit analysis of particulate matter, ozone and nitrogen dioxide. WHO Rep., 60 pp., http://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HRAPIE_project.pdf.

  • World Health Organization, 2013b: Review of evidence on health aspects of air pollution—REVIHAAP project. WHO Tech. Rep., 309 pp., http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf.

  • Wu, J.-Z., D.-D. Ge, L.-F. Zhou, L.-Y. Hou, Y. Zhou, and Q.-Y. Li, 2018: Effects of particulate matter on allergic respiratory diseases. Chronic Dis. Transl. Med., 4, 95102, https://doi.org/10.1016/j.cdtm.2018.04.001.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., W. Pan, W. Z. Lu, and H. D. He, 2015: Multifractal nature of particulate matters (PMs) in Hong Kong urban air. Sci. Total Environ., 532, 744751, https://doi.org/10.1016/j.scitotenv.2015.06.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 83 83 29
Full Text Views 4 4 0
PDF Downloads 3 3 0

Long Memory and Time Trends in Particulate Matter Pollution (PM2.5 and PM10) in the 50 U.S. States

View More View Less
  • 1 Faculty of Economics, University of Navarra, Pamplona, and Universidad Francisco de Vitoria, Madrid, Spain
  • 2 Environmental Statistics Unit, Department of Statistics, University of Ibadan, Ibadan, Nigeria
  • 3 Department of Economics, Babcock University, Ilishan-Remo, Nigeria
  • 4 Faculty of Mathematics, University of Turin, Turin, Italy
© Get Permissions
Restricted access

Abstract

This paper focuses on the analysis of the time series behavior of the air quality in the 50 U.S. states by looking at the statistical properties of particulate matter (PM10 and PM2.5) datasets. We use long daily time series of outdoor air quality indices to examine issues such as the degree of persistence as well as the existence of time trends in data. For this purpose, we use a long-memory fractionally integrated framework. The results show significant negative time trend coefficients in a number of states and evidence of long memory in the majority of the cases. In general, we observe heterogeneous results across counties though we notice higher degrees of persistence in the states on the west with respect to those on the east, where there is a general decreasing trend. It is hoped that the findings in the paper will continue to assist in quantitative evidence-based air quality regulation and policies.

Corresponding author: Luis A. Gil-Alana, alana@unav.es

Abstract

This paper focuses on the analysis of the time series behavior of the air quality in the 50 U.S. states by looking at the statistical properties of particulate matter (PM10 and PM2.5) datasets. We use long daily time series of outdoor air quality indices to examine issues such as the degree of persistence as well as the existence of time trends in data. For this purpose, we use a long-memory fractionally integrated framework. The results show significant negative time trend coefficients in a number of states and evidence of long memory in the majority of the cases. In general, we observe heterogeneous results across counties though we notice higher degrees of persistence in the states on the west with respect to those on the east, where there is a general decreasing trend. It is hoped that the findings in the paper will continue to assist in quantitative evidence-based air quality regulation and policies.

Corresponding author: Luis A. Gil-Alana, alana@unav.es
Save