• Allen, S. M. J., W. A. Gough, and T. Mohsin, 2015: Changes in the frequency of extreme temperatures records in Toronto, Ontario, Canada. Theor. Appl. Climatol., 119, 481491, https://doi.org/10.1007/s00704-014-1131-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, C. I., and W. A. Gough, 2017: Evolution of winter temperature in Toronto, Ontario, Canada: A case study of the winters 2013/14 and 2014-/5. J. Climate, 30, 53615376, https://doi.org/10.1175/JCLI-D-16-0562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, C. I., W. A. Gough, and T. Mohsin, 2018: Characterization of the urban heat island at Toronto: Revisiting the choice of rural sites using a measure of day-to-day variation. Urban Climate, 25, 187195, https://doi.org/10.1016/j.uclim.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlag, A.-B., and W. Kuttler, 1990: The significance of country breezes in urban planning. Energy Build., 15, 291297, https://doi.org/10.1016/0378-7788(90)90001-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernhardt, J., 2020: Comparing daily temperature averaging methods: The role of synoptic climatology in determining spatial and seasonal variability. Phys. Geogr., 41, 272288, https://doi.org/10.1080/02723646.2019.1657332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernhardt, J., and A. M. Carleton, 2019: Comparing daily temperature averaging methods: The role of surface and atmosphere variables in determining spatial and seasonal variability. Theor. Appl. Climatol., 136, 499512, https://doi.org/10.1007/s00704-018-2504-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernhardt, J., A. M. Carleton, and C. LaMagna, 2018: A comparison of daily temperature-averaging methods: Spatial variability and recent change for the CONUS. J. Climate, 31, 979996, https://doi.org/10.1175/JCLI-D-17-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonacci, O., and I. Zeljkovic, 2018: Differences between true mean temperatures and means calculated with four different approaches: A case study from three Croatian stations. Theor. Appl. Climatol., 131, 733743, https://doi.org/10.1007/s00704-016-1993-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonacci, O., I. Zeljkovic, R. Sakic Trogrlic, and J. Milkovic, 2013: Differences between true mean daily, monthly and annual air temperatures and air temperatures calculated with three equations: A case study from three Croatian stations. Theor. Appl. Climatol., 114, 271279, https://doi.org/10.1007/s00704-012-0830-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourscheidt, V., O. Pinto Jr., and K. P. Naccarato, 2016: The effects of Sao Paulo urban heat island on lightning activity: Decadal analysis (1999–2009). J. Geophys. Res. Atmos., 121, 44294442, https://doi.org/10.1002/2016JD024782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, C. E. P., 1921: True mean temperature. Mon. Wea. Rev., 49, 226229, https://doi.org/10.1175/1520-0493(1921)49<226:TMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., D. Yu, M. Georgescu, and J. Wu, 2018: Substantial impacts of landscape changes on summer climate with major regional differences: The case of China. Sci. Total Environ., 625, 416427, https://doi.org/10.1016/j.scitotenv.2017.12.290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X.-L., H.-M. Zhao, P.-X. Li, and Z.-Y. Yin, 2006: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ., 104, 133146, https://doi.org/10.1016/j.rse.2005.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S. Z., and C. Zhang, 1982: On the Shanghai heat island effect. Acta Geogr. Sin., 37, 372382.

  • Collison, P., and R. C. Tabony, 1984: The estimation of mean temperature from daily maxima and minima. Meteor. Mag., 113, 329337.

  • Eliasson, I., 1994: Urban-suburban-rural air temperature differences related to street geometry. Phys. Geogr., 15 (1), 122, https://doi.org/10.1080/02723646.1994.10642501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliasson, I., and B. Holmer, 1990: Urban heat island in Goteborg, Sweden. Theor. Appl. Climatol., 42, 187196, https://doi.org/10.1007/BF00866874.

  • Fan, Y., J. C. R. Hunt, and Y. Li, 2017: Buoyancy and turbulence-driven atmospheric circulation over urban areas. J. Environ. Sci., 59, 6371, https://doi.org/10.1016/j.jes.2017.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, W. A., 2008: Theoretical considerations of day-to-day temperature variability applied to Toronto and Calgary, Canada data. Theor. Appl. Climatol., 94, 97105, https://doi.org/10.1007/s00704-007-0346-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, W. A., and Y. Rosanov, 2001: Aspects of Toronto’s climate: Heat island and lake breeze. Can. Meteor. Oceanogr. Soc. Bull., 29, 6771.

    • Search Google Scholar
    • Export Citation
  • Gough, W. A., and A. Leung, 2002: Nature and fate of Hudson Bay permafrost. Reg. Environ. Change, 2, 177184, https://doi.org/10.1007/s10113-002-0048-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, W. A., and D. He, 2015: Diurnal temperature asymmetries and fog at Churchill, Manitoba. Theor. Appl. Climatol., 121, 113119, https://doi.org/10.1007/s00704-014-1227-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, W. A., and Y. Hu, 2016: Day to day temperature variability for four urban areas in China. Urban Climate, 17, 8088, https://doi.org/10.1016/j.uclim.2016.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, W. A., and S. Sokappadu, 2016: Climate context of the cold summer of 2014 in Toronto, ON, Canada. Theor. Appl. Climatol., 126, 183189, https://doi.org/10.1007/s00704-015-1571-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, W. A., and B. Shi, 2020: Impact of coastalization on day-to-day temperature variability along China’s east coast. J. Coast. Res., 36, 451456, https://doi.org/10.2112/JCOASTRES-D-19-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, W. A., A. Zaknic-Catovic, and A. Zajch, 2020: Sampling frequency of climate data for the determination of daily temperature and daily temperature extrema. Int. J. Climatol., https://doi.org/10.1002/joc.6528, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, S. A., and J. H. Pedersen, 1995: Comparison of three methods of calculating air temperature from electronic measurements. Z. Geomorphol., 39, 203210, https://doi.org/10.1016/S0883-9417(95)80025-5.

    • Search Google Scholar
    • Export Citation
  • Hartzell, F. Z., 1919: Comparison of methods for computing daily mean temperatures: Effect of discrepancies upon investigations of climatologists and biologists. Mon. Wea. Rev., 47, 799801, https://doi.org/10.1175/1520-0493(1919)47<799:COMFCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, J., G. Pigeon, and V. Masson, 2008: Urban-breeze circulation during the CAPITOUL experiment: Observational data analysis approach. Meteor. Atmos. Phys., 102, 223241, https://doi.org/10.1007/s00703-008-0329-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, E., and W. A. Gough, 2006: Freeze thaw cycles in Toronto, Canada, in a changing climate. Theor. Appl. Climatol., 83, 203210, https://doi.org/10.1007/s00704-005-0167-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, E. M., M. Jose, N. Nolke, and T. Mockel, 2017: Construction and use of a simple index of urbanisation in the rural–urban interface of Bangalore, India. Sustainability, 9, 2146, https://doi.org/10.3390/su9112146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., P. Ya. Groisman, M. Coughlan, N. Plummer, W. C. Wang, and T. R. Karl, 1990: Assessment of urbanization effects in time series of surface air temperature over land. Nature, 347, 169172, https://doi.org/10.1038/347169a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531, https://doi.org/10.1038/nature01675.

  • Karl, T. R., R. W. Knight, and N. Plummer, 1995: Trends in high-frequency climate variability in the twentieth century. Nature, 377, 217220, https://doi.org/10.1038/377217a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laidler, G. J., J. Ford, W. A. Gough, T. Ikummaq, A. S. Gagnon, and S. Kowal, 2009: Travelling and hunting in a changing Arctic: Assessing Inuit vulnerability to sea ice change in Igloolik, Nunavut. Climatic Change, 94, 363397, https://doi.org/10.1007/s10584-008-9512-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakhraj-Govender, R., S. Grab, and N. E. Ndebele, 2017: A homogenized long term temperature record for the Western Cape Province in South Africa: 1916-2013. Int. J. Climatol., 37, 23372353, https://doi.org/10.1002/joc.4849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., K. Wang, C. Zhou, and L. Wang, 2016: Modelling the true monthly mean temperature from continuous measurements over global land. Int. J. Climatol., 36, 21032110, https://doi.org/10.1002/joc.4445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., and P. Guttorp, 2013: Estimating daily mean temperature from synoptic climate observations. Int. J. Climatol., 33, 12641269, https://doi.org/10.1002/joc.3510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J. H., 2014: Handbook of Biological Statistics. 3rd ed. Sparky House Publishing, 313 pp.

  • McGovern, P. G., and W. A. Gough, 2015: East-west asymmetry in coastal temperatures of Hudson Bay as a proxy for sea ice. Arctic, 68, 445452, https://doi.org/10.14430/arctic4522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohsin, T., and W. A. Gough, 2010: Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA). Theor. Appl. Climatol., 101, 311327, https://doi.org/10.1007/s00704-009-0214-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohsin, T., and W. A. Gough, 2012: Characterization and estimation of urban heat island at Toronto: Impact of the choice of rural sites. Theor. Appl. Climatol., 108, 105117, https://doi.org/10.1007/s00704-011-0516-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1973: City size and the urban heat island. Atmos. Environ., 7, 769779, https://doi.org/10.1016/0004-6981(73)90140-6.

  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124, https://doi.org/10.1002/qj.49710845502.

    • Search Google Scholar
    • Export Citation
  • Pannell, C. W., 2006: Peri-urbanism in globalizing China: A critique. Eurasian Geogr. Econ., 47, 5457, https://doi.org/10.2747/1538-7216.47.1.54.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, R. V., 2010: The wildland-urban interface: Evaluating the definition effect. J. For., 108, 915, https://doi.org/10.1093/jof/108.1.9.

    • Search Google Scholar
    • Export Citation
  • Reicosky, D. C., L. J. Winkelman, J. M. Baker, and D. G. Baker, 1989: Accuracy of hourly air temperatures calculated from daily minima and maxima. Agric. For. Meteor., 46, 193209, https://doi.org/10.1016/0168-1923(89)90064-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, C., and Coauthors, 2018: Creating breathing cities by adopting urban ventilation assessment and wind corridor plan—The implementation in Chinese cities. J. Wind Eng. Ind. Aerodyn., 182, 170188, https://doi.org/10.1016/j.jweia.2018.09.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakakibara, Y., and K. Owa, 2005: Urban–rural temperature differences in coastal cities: Influence of rural sites. Int. J. Climatol., 25, 811820, https://doi.org/10.1002/joc.1180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, S. S., and M. B. Wilk, 1965: An analysis of variance test for normality (complete samples). Biometrika, 52, 591611, https://doi.org/10.1093/biomet/52.3-4.591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorensen, A., 2016: Periurbanization as the institutionalization of place: The case of Japan. Cities, 53, 134140, https://doi.org/10.1016/j.cities.2016.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., 2000: Influence of meteorological conditions on the intensity and form of the urban heat island effect in Regina. Can. Geogr., 44, 271285, https://doi.org/10.1111/j.1541-0064.2000.tb00709.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., 2010: A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol., 31, 200217, https://doi.org/10.1002/joc.2141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and T. R. Oke, 2009: Newly developed “Thermal Climate Zones” for defining and measuring urban heat island magnitude in the canopy layer. Eighth Symp. on the Urban Environment, Phoenix, AZ, Amer. Meteor. Soc., J8.2A, https://ams.confex.com/ams/pdfpapers/150476.pdf.

  • Tam, B. Y., and W. A. Gough, 2012: Examining past temperature variability in Moosonee, Thunder Bay and Toronto, Ontario, Canada through a day-to-day variability framework. Theor. Appl. Climatol., 110, 103113, https://doi.org/10.1007/s00704-012-0622-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tam, B. Y., W. A. Gough, and T. Mohsin, 2015: The impact of urbanization and the urban heat island effect on day to day temperature variation. Urban Climate, 12, 110, https://doi.org/10.1016/j.uclim.2014.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trewin, B., 2004: Effects of changes in algorithms used for the calculation of Australian mean temperature. Aust. Meteor. Mag., 53, 111.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., A. Khouahki, and E. Cunningham, 2017: On the impacts of computing daily temperatures as the average of the daily minimum and maximum temperatures. Atmos. Res., 198, 145150, https://doi.org/10.1016/j.atmosres.2017.08.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., L. W. Xiolan, E. J. Milewska, R. Hopkinson, and R. Malone, 2009: Bias in minimum temperature introduced by a redefinition of the climatological day at the Canadian Stations. J. Appl. Meteor. Climatol., 48, 21602168, https://doi.org/10.1175/2009JAMC2191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., L. W. Xiolan, E. J. Milewska, H. Wan, F. Yang, and V. Swail, 2012: A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J. Geol. Res., 117, D18110, https://doi.org/10.1029/2012JD017859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., 2015: Sampling biases in datasets of historical mean air temperature over land. Sci. Rep., 4, 4637, https://doi.org/10.1038/srep04637.

  • Wang, X. Q., Z. F. Wang, Y. B. Qi, and H. Guo, 2009: Effect of urbanization on the winter precipitation distribution in Beijing area. Sci. China., 52D, 250256, https://doi.org/10.1007/s11430-009-0019-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, R. O., 1993: Influence of different daily mean formulas on monthly and annual averages on temperature. Theor. Appl. Climatol., 47, 205213, https://doi.org/10.1007/BF00866241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, A., and C. J. Hays, 2005: Calculating daily mean temperatures by different methods: Implications from a non-linear algorithm. Agric. For. Meteor., 128, 5765, https://doi.org/10.1016/j.agrformet.2004.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, F.-T., C. Fu, Y. Qian, Y. Gao, and S.-Y. Wang, 2017: High-frequency daily temperature variability in China and its relationship to large-scale circulation. Int. J. Climatol., 37, 570582, https://doi.org/10.1002/joc.4722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žaknić-Ćatović, A., and W. A. Gough, 2018: A comparison of climatological observing windows and their impact on detecting daily temperature extrema. Theor. Appl. Climatol., 32, 4154, https://doi.org/10.1007/s00704-017-2068-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and A. Wang, 2012: What is monthly mean land surface air temperature? Eos, Trans. Amer. Geophys. Union, 93, 156, https://doi.org/10.1029/2012EO150006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., and K. Wang, 2016: Spatiotemporal divergence of the warming hiatus over land based on different definitions of mean temperature. Sci. Rep., 6, 31789, https://doi.org/10.1038/srep31789.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 92 92 12
Full Text Views 11 11 2
PDF Downloads 16 16 2

Thermal Signatures of Peri-Urban Landscapes

View More View Less
  • 1 Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
© Get Permissions
Restricted access

Abstract

A new thermal metric is examined that is based on the ratio of day-to-day warm and cold surface temperature transitions. Urban and rural sites in Canada are examined using this new metric for the minimum temperature, maximum temperature, and mean temperature of the day. A distinctive signature emerges for “peri-urban” landscapes—landscapes at the urban–rural interface—and thus may provide a useful and relatively easy way to detect such environments using the current and historical climate records. A climatological basis for the presence of these distinct thermal signatures in peri-urban landscapes is proposed.

Corresponding author: William A. Gough, william.gough@utoronto.ca

Abstract

A new thermal metric is examined that is based on the ratio of day-to-day warm and cold surface temperature transitions. Urban and rural sites in Canada are examined using this new metric for the minimum temperature, maximum temperature, and mean temperature of the day. A distinctive signature emerges for “peri-urban” landscapes—landscapes at the urban–rural interface—and thus may provide a useful and relatively easy way to detect such environments using the current and historical climate records. A climatological basis for the presence of these distinct thermal signatures in peri-urban landscapes is proposed.

Corresponding author: William A. Gough, william.gough@utoronto.ca
Save