• Aarnes, O. J., S. Abdalla, J.-R. Bidlot, Ø. Breivik, 2015: Marine wind and wave height trends at different ERA-Interim forecast ranges. J. Climate, 28, 819837, https://doi.org/10.1175/JCLI-D-14-00470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aarnes, O. J., M. Reistad, Ø. Breivik, E. Bitner-Gregersen, A. K. Magnusson, B. Natvig, and E. Vanem, 2017: Projected changes in significant wave height toward the end of the 21st century: Northeast Atlantic. J. Geophys. Res. Oceans, 122, 33943403, https://doi.org/10.1002/2016JC012521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alves, J. H. G. M., 2006: Numerical modelling of ocean swell contributions to the global wind-wave climate. Ocean Modell., 11, 98122, https://doi.org/10.1016/j.ocemod.2004.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 Arc-minute Global Relief Model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 25 pp., https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.

  • Amengual, A., V. Homar, R. Romero, S. Alonso, and C. Ramis, 2012: A statistical adjustment of regional climate model outputs to local scales: Application to Platja de Palma, Spain. J. Climate, 25, 939957, https://doi.org/10.1175/JCLI-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Applequist, S., 2012: Wind rose bias correction. J. Appl. Meteor. Climatol., 51, 13051309, https://doi.org/10.1175/JAMC-D-11-0193.1.

  • Babanin, A. V., M. Onorato, and F. Qiao, 2012: Surface waves and wave-coupled effects in lower atmosphere and upper ocean. J. Geophys. Res., 117, C00J01, https://doi.org/10.1029/2012JC007932.

    • Search Google Scholar
    • Export Citation
  • Bheeroo, R. A., N. Chandrasekar, S. Kaliraj, and N. S. Magesh, 2016: Shoreline change rate and erosion risk assessment along the Trou Aux Biches–Mont Choisy beach on the northwest coast of Mauritius using GIS-DSAS technique. Environ. Earth Sci., 75, 444, https://doi.org/10.1007/s12665-016-5311-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bidlot, J.-R., G. Lemos, A. Semedo, C3S Reanalysis Team, and ECMWF, 2019: ERA5 reanalysis and ERA5-based ocean wave hindcast. Second Int. Workshop on Waves, Storm Surges and Coastal Hazards, Melbourne, VIC, Australia, University of Melbourne, R1, http://waveworkshop.org/16thWaves/Presentations/R1%20Wave_Workshop_2019_Bidlot_et_al.pdf.

    • Search Google Scholar
    • Export Citation
  • Bitner-Gregersen, E. M., and O. Gramstad, 2018: Potential changes in the joint probabilistic description of the North Atlantic wave climate. Proc. ASME 2018 37th Int. Conf. on Ocean, Offshore and Arctic Engineering-OMAE2018, Madrid, Spain, ASME, OMAE2018-77592, https://doi.org/10.1115/OMAE2018-77592.

    • Search Google Scholar
    • Export Citation
  • Bitner-Gregersen, E. M., T. Hørte, L. I. Eide, and E. Vanem, 2015: Impact of climate change and extreme waves on tanker design. SNAME Maritime Convention 2014, Houston, TX, Society of Naval Architects and Marine Engineers, 288304.

    • Search Google Scholar
    • Export Citation
  • Boberg, F., P. Berg, P. Thejll, W. J. Gutowski, and J. H. Christensen, 2009: Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Climate Dyn., 32, 10971106, https://doi.org/10.1007/s00382-008-0446-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., L. Terray, F. Habets, and C. Martin, 2007: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol., 27, 16431655, https://doi.org/10.1002/joc.1602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brands, S., S. Herrera, D. San-Martín, and J. M. Gutiérrez, 2011: Validation of the ENSEMBLES global climate models over southwestern Europe using probability density functions, from a downscaling perspective. Climate Res., 48, 145161, https://doi.org/10.3354/cr00995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camus, P., I. J. Losada, C. Izaguirre, A. Espejo, M. Menéndez, and J. Pérez, 2017: Statistical wave climate projections for coastal impact assessments. Earth’s Future, 5, 918933, https://doi.org/10.1002/2017EF000609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casas-Prat, M., X. L. Wang, and N. Swart, 2018: CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Modell., 123, 6685, https://doi.org/10.1016/j.ocemod.2017.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., L. Bertotti, and P. Lionello, 1991: Wind wave cast in the Mediterranean Sea. J. Geophys. Res., 96, 10 73910 764, https://doi.org/10.1029/91JC00322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charles, E., D. Idier, P. Delecluse, M. Déqué, and G. Le Cozannet, 2012: Climate change impact on waves in the Bay of Biscay, France. Ocean Dyn., 62, 831848, https://doi.org/10.1007/s10236-012-0534-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., B. Chapron, R. Ezraty, and D. Vandemark, 2002: A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. J. Atmos. Oceanic Technol., 19, 18491859, https://doi.org/10.1175/1520-0426(2002)019<1849:AGVOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 10 September 2019, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global Planet. Change, 57, 1626, https://doi.org/10.1016/j.gloplacha.2006.11.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. M. Held, S.-J. Lin, and X. L. Wang, 2013: Ocean warming effect on surface gravity wave climate change for the end of the twenty-first century. J. Climate, 26, 60466066, https://doi.org/10.1175/JCLI-D-12-00410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferro, C., A. Hannachi, and D. Stephenson, 2005: Simple nonparametric techniques for exploring changing probability distributions of weather. J. Climate, 18, 43444354, https://doi.org/10.1175/JCLI3518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goussard, J. J., and M. Ducrocq, 2014: West African coastal area: Challenges and outlook. The Land/Ocean Interactions in the Coastal Zone of West and Central Africa, S. Diop, J. P. Barusseau, and C. Descamps, Eds., Estuaries of the World, Springer, 921, https://doi.org/10.1007/978-3-319-06388-1_2.

    • Search Google Scholar
    • Export Citation
  • Gumbel, E. J., 1935: Les valeurs extrêmes des distributions statistiques (Extreme values of statistical distributions). Ann. Inst. Henri Poincaré, 5,115158.

    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., S. Hagemann, C. Moseley, and C. Piani, 2011: Climate model bias correction and the role of timescales. Hydrol. Earth Syst. Sci., 15, 10651079, https://doi.org/10.5194/hess-15-1065-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951108, https://doi.org/10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, L. E., and M. P. Clark, 2003: Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol., 282, 5675, https://doi.org/10.1016/S0022-1694(03)00252-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, L. E., R. J. L. Wilby, and G. H. Leavesley, 2000: A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Amer. Water Resour. Assoc., 36, 387397, https://doi.org/10.1111/j.1752-1688.2000.tb04276.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., and C. E. Trenham, 2016: Evaluation of a CMIP5 derived dynamical global wind wave climate model ensemble. Ocean Modell., 103, 190203, https://doi.org/10.1016/j.ocemod.2015.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., X. L. Wang, J. A. Church, and V. R. Swail, 2010: Modeling proposal: Coordinated global ocean wave projections. Bull. Amer. Meteor. Soc., 91, 451454, https://doi.org/10.1175/2009BAMS2951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., X. L. Wang, R. Weisse, and V. R. Swail, 2012: Advancing wind-waves climate science: The COWCLIP Project. Bull. Amer. Meteor. Soc., 93, 791796, https://doi.org/10.1175/BAMS-D-11-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., Y. Fan, N. Mori, A. Semedo, and X. Wang, 2013a: Projected changes in wave climate from a multi-model ensemble. Nat. Climate Change, 3, 471476, https://doi.org/10.1038/nclimate1791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., J. Katzfey, and C. E. Trenham, 2013b: Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Modell., 70, 221245, https://doi.org/10.1016/j.ocemod.2012.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 2020, 151, https://doi.org/10.1002/QJ.3803.

    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Smedman, E. Sahleé, W. M. Drennan, K. K. Kahma, H. Pettersson, and F. Zhang, 2009: The atmospheric boundary layer during swell: A field study and interpretation of the turbulent kinetic energy budget for high wave ages. J. Atmos. Sci., 66, 27642779, https://doi.org/10.1175/2009JAS2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Smedman, A. Semedo, and A. Rutgersson, 2011: Comments on “A global climatology of wind–wave interaction.” J. Phys. Oceanogr., 41, 18111813, https://doi.org/10.1175/JPO-D-10-05015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., 2008: Waves in Oceanic and Coastal Waters. Cambridge University Press, 387pp.

  • IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Cambridge University Press, 1465 pp., https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Łabuz, T. A., 2015: Environmental impacts—Coastal erosion and coastline changes. Second Assessment of Climate Change for the Baltic Sea Basin, The BACC II Author Team, Ed., Regional Climate Studies, Springer, 381396, https://doi.org/10.1007/978-3-319-16006-1_20.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemos, G., A. Semedo, M. Dobrynin, A. Behrens, J. Staneva, J.-R. Bidlot, and P. Miranda, 2019: Mid-twenty-first century global wave climate projections: Results from a dynamic CMIP5 based ensemble. Global Planet. Change, 172, 6987, https://doi.org/10.1016/j.gloplacha.2018.09.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemos, G., M. Menendez, A. Semedo, P. Camus, M. Hemer, M. Dobrynin, and P. Miranda, 2020: On the need of bias correction methods for wave climate projections. Global Planet. Change, 186, 103109, https://doi.org/10.1016/j.gloplacha.2019.103109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mínguez, R., A. Espejo, A. Tomás, F. J. Méndez, and I. J. Losada, 2011: Directional calibration of wave reanalysis databases using instrumental data. J. Atmos. Oceanic Technol., 28, 14661485, https://doi.org/10.1175/JTECH-D-11-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, N., T. Yasuda, H. Mase, T. Tom, and Y. Oku, 2010: Projections of extreme wave climate change under global warming. Hydrol. Res. Lett., 4, 1519, https://doi.org/10.3178/hrl.4.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morim, J., and Coauthors, 2019: Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Climate Change, 9, 711718, https://doi.org/10.1038/s41558-019-0542-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NGDC, 2006: 2-minute Gridded Global Relief Data (ETOPO2) v2. NOAA National Geophysical Data Center, accessed 7 December 2019, https://doi.org/10.7289/V5J1012Q.

    • Crossref
    • Export Citation
  • Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney, 2007: Evaluation of the AR4 climate models simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 43564376, https://doi.org/10.1175/JCLI4253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauser, F., V. Schemann, and S. Sonntag, 2015: Sustainable early-career networks. Nat. Geosci., 8, 745746, https://doi.org/10.1038/ngeo2541.

  • Rocheta, E., J. P. Evans, and A. Sharma, 2017: Can bias correction of regional climate model lateral boundary conditions improve low-frequency rainfall variability? J. Climate, 30, 97859806, https://doi.org/10.1175/JCLI-D-16-0654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutgersson, A., Ø. Saetra, A. Semedo, B. Carlson, and R. Kumar, 2010: Impact of surface waves in a regional climate model. Meteor. Z., 19, 247257, https://doi.org/10.1127/0941-2948/2010/0456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., 2010: Atmosphere–ocean interactions in swell dominated wave fields. Ph.D. thesis, Uppsala University, 53 pp.

  • Semedo, A., Ø. Sætra, A. Rutgersson, K. K. Kahma, and H. Pettersson, 2009: Wave induced wind in the marine boundary layer. J. Atmos. Sci., 66, 22562271, https://doi.org/10.1175/2009JAS3018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., K. Sušelj, A. Rutgersson, and A. Sterl, 2011: A global view on the wind sea and swell climate and variability from EERA-40. J. Climate, 24, 14611479, https://doi.org/10.1175/2010JCLI3718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., R. Behrens, A. Sterl, L. Bengtsson, and H. Günther, 2013: Projection of global wave climate change toward the end of the twenty-first century. J. Climate, 26, 82698288, https://doi.org/10.1175/JCLI-D-12-00658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., and Coauthors, 2018: CMIP5-derived single-forcing, single-model, and single-scenario wind-wave climate ensemble: Configuration and performance evaluation. J. Mar. Sci. Eng., 6, 90, https://doi.org/10.3390/JMSE6030090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares, P., and R. Cardoso, 2018: A simple method to assess the added value using high-resolution climate distributions: Application to the EURO-CORDEX daily precipitation. Int. J. Climatol., 38, 14841498, https://doi.org/10.1002/joc.5261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., A. Semedo, M. Dobrynin, A. Behrens, J. Staneva, and G. Lemos, 2019: A sampling technique to compare climate simulations with sparse satellite observations: Performance evaluation of a CMIP5 EC-Earth forced dynamical wave climate ensemble with altimeter observations. Ocean Modell., 134, 1829, https://doi.org/10.1016/j.ocemod.2018.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245, https://doi.org/10.1175/2007JAS2427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terink, W., R. T. W. L. Hurkmans, P. J. J. F. Torfs, and R. Uijlenhoet, 2009: Bias correction of temperature and precipitation data for regional climate model application to the Rhine basin. Hydrol. Earth Syst. Sci. Discuss., 6, 53775413, https://doi.org/10.5194/hessd-6-5377-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuomi, L., K. Kahma, and H. Pettersson, 2011: Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res., 16, 451472.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wang, X. L., V. R. Swail, and A. Cox, 2010: Dynamical versus statistical downscaling methods for ocean wave heights. Int. J. Climatol., 30, 317332, https://doi.org/10.1002/joc.1899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrological implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol., 19, 931950, https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., S. Zieger, and V. Babanin, 2011: Global trends in wind speed and wave height. Science, 332, 451455, https://doi.org/10.1126/science.1197219.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 86 86 29
Full Text Views 19 19 7
PDF Downloads 17 17 2

Bias-Corrected CMIP5-Derived Single-Forcing Future Wind-Wave Climate Projections toward the End of the Twenty-First Century

View More View Less
  • 1 Instituto Dom Luiz, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
  • 2 Water Science and Engineering Programme, IHE Delft, Delft, Netherlands, and Instituto Dom Luiz, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
  • 3 Deutscher Wetterdienst, Hamburg, Germany
  • 4 Environmental Hydraulics Institute, Universidad de Cantabria, Santander, Spain
  • 5 Instituto Dom Luiz, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
© Get Permissions
Restricted access

Abstract

A quantile-based bias-correction method is applied to a seven-member dynamic ensemble of global wave climate simulations with the aim of reducing the significant wave height H S, mean wave period T m, and mean wave direction (MWD) biases, in comparison with the ERA5 reanalysis. The corresponding projected changes toward the end of the twenty-first century are assessed. Seven CMIP5 EC-EARTH runs (single forcing) were used to force seven wave model (WAM) realizations (single model), following the RCP8.5 scenario (single scenario). The biases for the 1979–2005 reference period (present climate) are corrected using the empirical Gumbel quantile mapping and empirical quantile mapping methods. The same bias-correction parameters are applied to the H S, T m (and wave energy flux P w), and MWD future climate projections for the 2081–2100 period. The bias-corrected projected changes show increases in the annual mean H S (14%), T m (6.5%), and P w (30%) in the Southern Hemisphere and decreases in the Northern Hemisphere (mainly in the North Atlantic Ocean) that are more pronounced during local winter. For the upper quantiles, the bias-corrected projected changes are more striking during local summer, up to 120%, for P w. After bias correction, the magnitude of the H S, T m, and P w original projected changes has generally increased. These results, albeit consistent with recent studies, show the relevance of a quantile-based bias-correction method in the estimation of the future projected changes in swave climate that is able to deal with the misrepresentation of extreme phenomena, especially along the tropical and subtropical latitudes.

Corresponding author: Gil Lemos, grlemos@fc.ul.pt

Abstract

A quantile-based bias-correction method is applied to a seven-member dynamic ensemble of global wave climate simulations with the aim of reducing the significant wave height H S, mean wave period T m, and mean wave direction (MWD) biases, in comparison with the ERA5 reanalysis. The corresponding projected changes toward the end of the twenty-first century are assessed. Seven CMIP5 EC-EARTH runs (single forcing) were used to force seven wave model (WAM) realizations (single model), following the RCP8.5 scenario (single scenario). The biases for the 1979–2005 reference period (present climate) are corrected using the empirical Gumbel quantile mapping and empirical quantile mapping methods. The same bias-correction parameters are applied to the H S, T m (and wave energy flux P w), and MWD future climate projections for the 2081–2100 period. The bias-corrected projected changes show increases in the annual mean H S (14%), T m (6.5%), and P w (30%) in the Southern Hemisphere and decreases in the Northern Hemisphere (mainly in the North Atlantic Ocean) that are more pronounced during local winter. For the upper quantiles, the bias-corrected projected changes are more striking during local summer, up to 120%, for P w. After bias correction, the magnitude of the H S, T m, and P w original projected changes has generally increased. These results, albeit consistent with recent studies, show the relevance of a quantile-based bias-correction method in the estimation of the future projected changes in swave climate that is able to deal with the misrepresentation of extreme phenomena, especially along the tropical and subtropical latitudes.

Corresponding author: Gil Lemos, grlemos@fc.ul.pt
Save