• Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovčić, P., A. Ryzhkov, D. Zrnić, and G. Zhang, 2018: Polarimetric radar relations for quantification of snow based on disdrometer data. J. Appl. Meteor. Climatol., 57, 103120, https://doi.org/10.1175/JAMC-D-17-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, https://doi.org/10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S., and T. Toto, 2013: Interpolated sonde (INTERPOLATEDSONDE); ARM Mobile Facility (OLI) Oliktok Point, Alaska; AMF3 (M1) (updated hourly). ARM Climate Research Facility Data Archive, accessed 19 April 2017, https://doi.org/10.5439/1095316.

    • Crossref
    • Export Citation
  • Griffin, E., T. Schuur, and A. Ryzhkov, 2018: A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol., 57, 3150, https://doi.org/10.1175/JAMC-D-17-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardin, J., D. Nelson, I. Lindenmaier, B. Isom, K. Johnson, A. Matthews, and N. Bharadwaj, 2011: ARM: Ka-band scanning ARM cloud radar hemispherical sky RHI scan (KASACRHSRH). Subset used: 708N29042.8900N, 149853012.7800W: Oliktok Point Mobile Facility (M1), ARM Climate Research Facility Data Archive, accessed 8 October 2017, https://doi.org/10.5439/1046197.

    • Crossref
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2008: The Spectral Ice Habit Prediction System (SHIPS). Part II: Simulation of nucleation and depositional growth of polycrystals. J. Atmos. Sci., 65, 30713094, https://doi.org/10.1175/2008JAS2615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Z. Wang, and S. Y. Matrosov, 2005: Improved radar ice water content retrieval algorithms using coincident microphysical and radar measurements. J. Appl. Meteor., 44, 13911412, https://doi.org/10.1175/JAM2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isom, B., N. Bharadwaj, I. Lindenmaier, D. Nelson, J. Hardin, and A. Matthews, Eds., 2018: Ka-band scanning ARM cloud radar (KASACRPPIVH); ARM Mobile Facility (OLI) Oliktok Point, Alaska, AMF3 (M1). ARM Data Center, accessed 9 January 2020, https://doi.org/10.5439/1224837.

    • Crossref
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., and Coauthors, 2020: The ARM radar network: At the leading-edge of cloud and precipitation observations. Bull. Amer. Meteor. Soc., 101, E588E607, https://doi.org/10.1175/BAMS-D-18-0288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, https://doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maahn, M., 2019: MASC snow particle images; ARM Mobile Facility (OLI) Oliktok Point, Alaska; AMF3 (M1). ARM Data Center, accessed 21 February 2019, https://doi.org/10.5439/1497701.

    • Crossref
    • Export Citation
  • Maahn, M., F. Hoffmann, M. D. Shupe, G. de Boer, S. Y. Matrosov, and E. P. Luke, 2019: Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration? Atmos. Meas. Tech., 12, 31513171, https://doi.org/10.5194/amt-12-3151-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ., Ser. 7, 2, 321335.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1991: Theoretical study of radar polarization parameters obtained from cirrus clouds. J. Atmos. Sci., 48, 10621070, https://doi.org/10.1175/1520-0469(1991)048<1062:TSORPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1997: Variability of microphysical parameters in high-altitude ice clouds: Results of the remote sensing method. J. Appl. Meteor., 36, 633648, https://doi.org/10.1175/1520-0450-36.6.633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2020: Ice hydrometeor shape estimations using polarimetric operational and research radar measurements. Atmosphere, 11, 97, https://doi.org/10.3390/atmos11010097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and A. J. Heymsfield, 2017: Empirical relations between size parameters of ice hydrometeor populations and radar reflectivity. J. Appl. Meteor. Climatol., 56, 24792488, https://doi.org/10.1175/JAMC-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and D. D. Turner, 2018: Retrieving mean temperature of atmospheric liquid water layers using microwave radiometer measurements. J. Atmos. Oceanic Technol., 35, 10911102, https://doi.org/10.1175/JTECH-D-17-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, https://doi.org/10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., M. D. Shupe, and I. V. Djalalova, 2008: Snowfall retrievals using millimeter-wavelength cloud radars. J. Appl. Meteor. Climatol., 47, 769777, https://doi.org/10.1175/2007JAMC1768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., G. G. Mace, R. Marchand, M. D. Shupe, A. G. Hallar, and I. B. McCubbin, 2012: Observations of Ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode. J. Atmos. Oceanic Technol., 29, 9891008, https://doi.org/10.1175/JTECH-D-11-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Cifelli, P. J. Neiman, and A. B. White, 2016: Radar rain-rate estimators and their variability due to rainfall type: An assessment based on Hydrometeorology Testbed data from the southeastern United States. J. Appl. Meteor. Climatol., 55, 13451358, https://doi.org/10.1175/JAMC-D-15-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., C. G. Schmitt, M. Maahn, and G. de Boer, 2017: Atmospheric ice particle shape estimates from polarimetric radar measurements and in situ observations. J. Atmos. Oceanic Technol., 34, 25692587, https://doi.org/10.1175/JTECH-D-17-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., M. Maahn, and G. de Boer, 2019: Observational and modeling study of ice hydrometeor radar dual-wavelength ratios. J. Appl. Meteor. Climatol., 58, 20052017, https://doi.org/10.1175/JAMC-D-19-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, B., B. Isom, D. Nelson, I. Lindenmaier, J. Hardin, K. Johnson, and N. N Bharadwaj, 2015: Ka ARM zenith radar (KAZRGE); ARM Mobile Facility (OLI) Oliktok Point, Alaska; AMF3 (M1) (updated hourly). ARM Climate Research Facility Data Archive, accessed 9 January 2020, https://doi.org/10.5439/1025214.

    • Crossref
    • Export Citation
  • Melnikov, V., 2017: Parameters of cloud ice particles retrieved from radar data. J. Atmos. Oceanic Technol., 34, 717728, https://doi.org/10.1175/JTECH-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mosimann, L., 1995: An improved method for determining the degree of snow crystal riming by vertical Doppler radar. Atmos. Res., 37, 305323, https://doi.org/10.1016/0169-8095(94)00050-N.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myagkov, A., P. Seifert, M. Bauer-Pfundstein, and U. Wandinger, 2016: Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals. Atmos. Meas. Tech., 9, 469489, https://doi.org/10.5194/amt-9-469-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oue, M., P. Kollias, A. Ryzhkov, and E. Luke, 2018: Towards exploring the synergy between cloud radar polarimetry and Doppler spectral analysis in deep cold precipitating systems in the Arctic. J. Geophys. Res. Atmos., 123, 27972815, https://doi.org/10.1002/2017JD027717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp.

    • Crossref
    • Export Citation
  • Reinking, R. F., S. Y. Matrosov, R. A. Kropfli, and B. W. Bartram, 2002: Evaluation of a 45° slant quasi-linear radar polarization for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321, https://doi.org/10.1175/1520-0426-19.3.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2019: Radar Polarimetry for Weather Observations. Springer, 486 pp.

  • Ryzhkov, A. V., and Coauthors, 2017: Estimation of depolarization ratio using weather radars with simultaneous transmission/reception. J. Appl. Meteor. Climatol., 56, 17971816, https://doi.org/10.1175/JAMC-D-16-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2018: Bulk-density representations of branched planar ice crystals: Errors in the polarimetric radar variables. J. Appl. Meteor. Climatol., 57, 333346, https://doi.org/10.1175/JAMC-D-17-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, J. M., and F. Fabry, 2018: Contrasting polarimetric observations of stratiform riming and nonriming events. J. Appl. Meteor. Climatol., 57, 457476, https://doi.org/10.1175/JAMC-D-16-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 60 60 19
Full Text Views 32 32 5
PDF Downloads 44 44 5

Hydrometeor Shape Variability in Snowfall as Retrieved from Polarimetric Radar Measurements

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA Physical Sciences Laboratory, Boulder, Colorado
  • 2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA Severe Storms Laboratory, Norman, Oklahoma
  • 3 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA Physical Sciences Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

A polarimetric radar–based method for retrieving atmospheric ice particle shapes is applied to snowfall measurements by a scanning Ka-band radar deployed at Oliktok Point, Alaska (70.495°N, 149.883°W). The mean aspect ratio, which is defined by the hydrometeor minor-to-major dimension ratio for a spheroidal particle model, is retrieved as a particle shape parameter. The radar variables used for aspect ratio profile retrievals include reflectivity, differential reflectivity, and the copolar correlation coefficient. The retrievals indicate that hydrometeors with mean aspect ratios below 0.2–0.3 are usually present in regions with air temperatures warmer than approximately from −17° to −15°C, corresponding to a regime that has been shown to be favorable for growth of pristine ice crystals of planar habits. Radar reflectivities corresponding to the lowest mean aspect ratios are generally between −10 and 10 dBZ. For colder temperatures, mean aspect ratios are typically in a range between 0.3 and 0.8. There is a tendency for hydrometeor aspect ratios to increase as particles transition from altitudes in the temperature range from −17° to −15°C toward the ground. This increase is believed to result from aggregation and riming processes that cause particles to become more spherical and is associated with areas demonstrating differential reflectivity decreases with increasing reflectivity. Aspect ratio retrievals at the lowest altitudes are consistent with in situ measurements obtained using a surface-based multiangle snowflake camera. Pronounced gradients in particle aspect ratio profiles are observed at altitudes at which there is a change in the dominant hydrometeor species, as inferred by spectral measurements from a vertically pointing Doppler radar.

Current affiliation: Leipzig University, Leipzig, Germany.

Corresponding author: Sergey Y. Matrosov, sergey.matrosov@noaa.gov

Abstract

A polarimetric radar–based method for retrieving atmospheric ice particle shapes is applied to snowfall measurements by a scanning Ka-band radar deployed at Oliktok Point, Alaska (70.495°N, 149.883°W). The mean aspect ratio, which is defined by the hydrometeor minor-to-major dimension ratio for a spheroidal particle model, is retrieved as a particle shape parameter. The radar variables used for aspect ratio profile retrievals include reflectivity, differential reflectivity, and the copolar correlation coefficient. The retrievals indicate that hydrometeors with mean aspect ratios below 0.2–0.3 are usually present in regions with air temperatures warmer than approximately from −17° to −15°C, corresponding to a regime that has been shown to be favorable for growth of pristine ice crystals of planar habits. Radar reflectivities corresponding to the lowest mean aspect ratios are generally between −10 and 10 dBZ. For colder temperatures, mean aspect ratios are typically in a range between 0.3 and 0.8. There is a tendency for hydrometeor aspect ratios to increase as particles transition from altitudes in the temperature range from −17° to −15°C toward the ground. This increase is believed to result from aggregation and riming processes that cause particles to become more spherical and is associated with areas demonstrating differential reflectivity decreases with increasing reflectivity. Aspect ratio retrievals at the lowest altitudes are consistent with in situ measurements obtained using a surface-based multiangle snowflake camera. Pronounced gradients in particle aspect ratio profiles are observed at altitudes at which there is a change in the dominant hydrometeor species, as inferred by spectral measurements from a vertically pointing Doppler radar.

Current affiliation: Leipzig University, Leipzig, Germany.

Corresponding author: Sergey Y. Matrosov, sergey.matrosov@noaa.gov
Save