• Archer, C. L., and M. Z. Jacobson, 2003: Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J. Geophys. Res., 108, 4289, https://doi.org/10.1029/2002JD002076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, C. L., and M. Z. Jacobson, 2005: Evaluation of global wind power. J. Geophys. Res., 110, D12110, https://doi.org/10.1029/2004JD005462.

  • Barthelmie, R. J., 1999: The effects of atmospheric stability on coastal wind climates. Meteor. Appl., 6, 3947, https://doi.org/10.1017/S1350482799000961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bett, P. E., H. E. Thornton, and R. T. Clark, 2017: Using the Twentieth Century Reanalysis to assess climate variability for the European wind industry. Theor. Appl. Climatol., 127, 6180, https://doi.org/10.1007/s00704-015-1591-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, D., 2019: An assessment of NASA’s GMAO MERRA-2 reanalysis surface winds. J. Climate, 32, 82618281, https://doi.org/10.1175/JCLI-D-19-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, D., A. Rocha, M. Gómez-Gesteira, and C. S. Santos, 2014: Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula. Appl. Energy, 134, 5764, https://doi.org/10.1016/j.apenergy.2014.08.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coburn, J. J., 2019: Assessing wind data from reanalyses for the upper Midwest. J. Appl. Meteor. Climatol., 58, 429446, https://doi.org/10.1175/JAMC-D-18-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, R. J., K. M. Willett, D. E. Parker, and L. Mitchell, 2016: Expanding HadISD: Quality-controlled, sub-daily station data from 1931. Geosci. Instrum. Methods Data Syst., 5, 473491, https://doi.org/10.5194/gi-5-473-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gocic, M., and S. Trajkovic, 2013: Analysis of changes in meteorological variables using Mann–Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet. Change, 100, 172182, https://doi.org/10.1016/j.gloplacha.2012.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hobbins, M., A. Wood, D. Streubel, and K. Werner, 2012: What drives the variability of evaporative demand across the conterminous United States? J. Hydrometeor., 13, 11951214, https://doi.org/10.1175/JHM-D-11-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, E., and J. Wang, 2012: Trends in wind speed at wind turbine height of 80 m over the contiguous United States using the North American Regional Reanalysis (NARR). J. Appl. Meteor. Climatol., 51, 21882202, https://doi.org/10.1175/JAMC-D-11-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyhani, A., M. Ghasemi-Varnamkhasti, M. Khanali, and R. Abbaszadeh, 2010: An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran. Energy, 35, 188201, https://doi.org/10.1016/j.energy.2009.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., and K. Paik, 2015: Recent recovery of surface wind speed after decadal decrease: A focus on South Korea. Climate Dyn., 45, 16991712, https://doi.org/10.1007/s00382-015-2546-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., M. B. McElroy, and J. Kiviluoma, 2009: Global potential for wind-generated electricity. Proc. Natl. Acad. Sci. USA, 106, 10 93310 938, https://doi.org/10.1073/pnas.0904101106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2007: Assessment of the severe weather environment in North America simulated by a global climate model. Atmos. Sci. Lett., 8, 100106, https://doi.org/10.1002/asl.159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., T. G. Van Niel, L. T. Li, M. L. Roderick, D. P. Rayner, L. Ricciardulli, and R. J. Donohue, 2008: Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett., 35, L20403, https://doi.org/10.1029/2008GL035627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., and Coauthors, 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416–417, 182205, https://doi.org/10.1016/j.jhydrol.2011.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menut, L., 2008: Sensitivity of hourly Saharan dust emissions to NCEP and ECMWF modeled wind speed. J. Geophys. Res., 113, D16201, https://doi.org/10.1029/2007JD009522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muggeo, V. M., 2003: Estimating regression models with unknown break-points. Stat. Med., 22, 30553071, https://doi.org/10.1002/sim.1545.

  • Muggeo, V. M., 2008: Segmented: An R package to fit regression models with broken-line relationships. R News, No. 8/1, R Foundation, Vienna, Austria, 20–25.

  • Pryor, S. C., and R. Barthelmie, 2010: Climate change impacts on wind energy: A review. Renewable Sustainable Energy Rev., 14, 430437, https://doi.org/10.1016/j.rser.2009.07.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and Coauthors, 2009: Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, https://doi.org/10.1029/2008JD011416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramon, J., L. Lledó, V. Torralba, A. Soret, and F. J. Doblas-Reyes, 2019: What global reanalysis best represents near-surface winds? Quart. J. Roy. Meteor. Soc., 145, 32363251, https://doi.org/10.1002/qj.3616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rehman, S., 2013: Long-term wind speed analysis and detection of its trends using Mann–Kendall test and linear regression method. Arabian J. Sci. Eng., 38, 421437, https://doi.org/10.1007/s13369-012-0445-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., L. D. Rotstayn, G. D. Farquhar, and M. T. Hobbins, 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34, L17403, https://doi.org/10.1029/2007GL031166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, S., and J. Apt, 2016: Quantifying sources of uncertainty in reanalysis derived wind speed. Renewable Energy, 94, 157165, https://doi.org/10.1016/j.renene.2016.03.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfer, B., C. Beck, K. Aihara, D. Witthaut, and M. Timme, 2018: Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics. Nat. Energy, 3, 119126, https://doi.org/10.1038/s41560-017-0058-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, https://doi.org/10.1175/JCLI3790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siam, M. S., M.-E. Demory, and E. A. Eltahir, 2013: Hydrological cycles over the Congo and Upper Blue Nile Basins: Evaluation of general circulation model simulations and reanalysis products. J. Climate, 26, 88818894, https://doi.org/10.1175/JCLI-D-12-00404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A., N. Lott, and R. Vose, 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, https://doi.org/10.1175/2011BAMS3015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Q., G. Huang, K. Hu, and D. Niyogi, 2019: Observed and global climate model based changes in wind power potential over the Northern Hemisphere during 1979–2016. Energy, 167, 12241235, https://doi.org/10.1016/j.energy.2018.11.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torralba, V., F. J. Doblas-Reyes, and N. Gonzalez-Reviriego, 2017: Uncertainty in recent near-surface wind speed trends: A global reanalysis intercomparison. Environ. Res. Lett., 12, 114019, https://doi.org/10.1088/1748-9326/aa8a58.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troccoli, A., K. Muller, P. Coppin, R. Davy, C. Russell, and A. L. Hirsch, 2012: Long-term wind speed trends over Australia. J. Climate, 25, 170183, https://doi.org/10.1175/2011JCLI4198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., J. Cattiaux, P. Yiou, J.-N. Thépaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756761, https://doi.org/10.1038/ngeo979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veers, P., and Coauthors, 2019: Grand challenges in the science of wind energy. Science, 366, eaau2027, https://doi.org/10.1126/science.aau2027.

  • Wang, J., J. Hu, and K. Ma, 2016: Wind speed probability distribution estimation and wind energy assessment. Renewable Sustainable Energy Rev., 60, 881899, https://doi.org/10.1016/j.rser.2016.01.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, C., A. Kumar, and Y. Xue, 2019: Uncertainties in reanalysis surface wind stress and their relationship with observing systems. Climate Dyn., 52, 30613078, https://doi.org/10.1007/s00382-018-4310-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wohland, J., N. E. Omrani, D. Witthaut, and N. S. Keenlyside, 2019: Inconsistent wind speed trends in current twentieth century reanalyses. J. Geophys. Res. Atmos., 124, 19311940, https://doi.org/10.1029/2018JD030083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., J. Zha, D. Zhao, and Q. Yang, 2018: Changes in terrestrial near-surface wind speed and their possible causes: An overview. Climate Dyn., 51, 20392078, https://doi.org/10.1007/s00382-017-3997-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., B. Huang, Z.-Z. Hu, A. Kumar, C. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 25112539, https://doi.org/10.1007/s00382-010-0954-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2018: Global terrestrial stilling: Does Earth’s greening play a role? Environ. Res. Lett., 13, 124013, https://doi.org/10.1088/1748-9326/aaea84.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2019: A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Climate Change, 9, 979985, https://doi.org/10.1038/s41558-019-0622-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zha, J., J. Wu, D. Zhao, and J. Tang, 2019: A possible recovery of the near-surface wind speed in eastern China during winter after 2000 and the potential causes. Theor. Appl. Climatol., 136, 119134, https://doi.org/10.1007/s00704-018-2471-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 79 79 79
Full Text Views 25 25 25
PDF Downloads 25 25 25

Evaluation of Global Reanalysis Land Surface Wind Speed Trends to Support Wind Energy Development Using In Situ Observations

View More View Less
  • 1 School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
  • 2 School of Earth and Ocean Sciences, Cardiff University, Cardiff, United Kingdom
  • 3 Department of Earth and Space Science, Southern University of Science and Technology, Shenzhen, China
© Get Permissions
Restricted access

Abstract

Global reanalysis products are important tools across disciplines to study past meteorological changes and are especially useful for wind energy resource evaluations. Studies of observed wind speed show that land surface wind speed declined globally since the 1960s (known as global terrestrial stilling) but reversed with a turning point around 2010. Whether the declining trend and the turning point have been captured by reanalysis products remains unknown so far. To fill this research gap, a systematic assessment of climatological winds and trends in five reanalysis products (ERA5, ERA-Interim, MERRA-2, JRA-55, and CFSv2) was conducted by comparing gridcell time series of 10-m wind speed with observational data from 1439 in situ meteorological stations for the period 1989–2018. Overall, ERA5 is the closest to the observations according to the evaluation of climatological winds. However, substantial discrepancies were found between observations and simulated wind speeds. No reanalysis product showed similar change to that of the global observations, although some showed regional agreement. This discrepancy between observed and reanalysis land surface wind speed indicates the need for prudence when using reanalysis products for the evaluation and prediction of winds. The possible reasons for the inconsistent wind speed trends between reanalysis products and observations are analyzed. The results show that wind energy production should select different products for different regions to minimize the discrepancy with observations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhenzhong Zeng, zengzz@sustech.edu.cn

Abstract

Global reanalysis products are important tools across disciplines to study past meteorological changes and are especially useful for wind energy resource evaluations. Studies of observed wind speed show that land surface wind speed declined globally since the 1960s (known as global terrestrial stilling) but reversed with a turning point around 2010. Whether the declining trend and the turning point have been captured by reanalysis products remains unknown so far. To fill this research gap, a systematic assessment of climatological winds and trends in five reanalysis products (ERA5, ERA-Interim, MERRA-2, JRA-55, and CFSv2) was conducted by comparing gridcell time series of 10-m wind speed with observational data from 1439 in situ meteorological stations for the period 1989–2018. Overall, ERA5 is the closest to the observations according to the evaluation of climatological winds. However, substantial discrepancies were found between observations and simulated wind speeds. No reanalysis product showed similar change to that of the global observations, although some showed regional agreement. This discrepancy between observed and reanalysis land surface wind speed indicates the need for prudence when using reanalysis products for the evaluation and prediction of winds. The possible reasons for the inconsistent wind speed trends between reanalysis products and observations are analyzed. The results show that wind energy production should select different products for different regions to minimize the discrepancy with observations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhenzhong Zeng, zengzz@sustech.edu.cn
Save