Empirical–Statistical Downscaling of Austral Summer Precipitation over South America, with a Focus on the Central Peruvian Andes and the Equatorial Amazon Basin

Juan Sulca Instituto Geofísico del Perú, Lima, Peru

Search for other papers by Juan Sulca in
Current site
Google Scholar
PubMed
Close
,
Mathias Vuille Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Mathias Vuille in
Current site
Google Scholar
PubMed
Close
,
Oliver Elison Timm Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Oliver Elison Timm in
Current site
Google Scholar
PubMed
Close
,
Bo Dong Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Bo Dong in
Current site
Google Scholar
PubMed
Close
, and
Ricardo Zubieta Instituto Geofísico del Perú, Lima, Peru

Search for other papers by Ricardo Zubieta in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation is one of the most difficult variables to estimate using large-scale predictors. Over South America (SA), this task is even more challenging, given the complex topography of the Andes. Empirical–statistical downscaling (ESD) models can be used for this purpose, but such models, applicable for all of SA, have not yet been developed. To address this issue, we construct an ESD model using multiple-linear-regression techniques for the period 1982–2016 that is based on large-scale circulation indices representing tropical Pacific Ocean, Atlantic Ocean, and South American climate variability, to estimate austral summer [December–February (DJF)] precipitation over SA. Statistical analyses show that the ESD model can reproduce observed precipitation anomalies over the tropical Andes (Ecuador, Colombia, Peru, and Bolivia), the eastern equatorial Amazon basin, and the central part of the western Argentinian Andes. On a smaller scale, the ESD model also shows good results over the Western Cordillera of the Peruvian Andes. The ESD model reproduces anomalously dry conditions over the eastern equatorial Amazon and the wet conditions over southeastern South America (SESA) during the three extreme El Niños: 1982/83, 1997/98, and 2015/16. However, it overestimates the observed intensities over SESA. For the central Peruvian Andes as a case study, results further show that the ESD model can correctly reproduce DJF precipitation anomalies over the entire Mantaro basin during the three extreme El Niño episodes. Moreover, multiple experiments with varying predictor combinations of the ESD model corroborate the hypothesis that the interaction between the South Atlantic convergence zone and the equatorial Atlantic Ocean provoked the Amazon drought in 2015/16.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juan Sulca, sulcaf5@gmail.com

Abstract

Precipitation is one of the most difficult variables to estimate using large-scale predictors. Over South America (SA), this task is even more challenging, given the complex topography of the Andes. Empirical–statistical downscaling (ESD) models can be used for this purpose, but such models, applicable for all of SA, have not yet been developed. To address this issue, we construct an ESD model using multiple-linear-regression techniques for the period 1982–2016 that is based on large-scale circulation indices representing tropical Pacific Ocean, Atlantic Ocean, and South American climate variability, to estimate austral summer [December–February (DJF)] precipitation over SA. Statistical analyses show that the ESD model can reproduce observed precipitation anomalies over the tropical Andes (Ecuador, Colombia, Peru, and Bolivia), the eastern equatorial Amazon basin, and the central part of the western Argentinian Andes. On a smaller scale, the ESD model also shows good results over the Western Cordillera of the Peruvian Andes. The ESD model reproduces anomalously dry conditions over the eastern equatorial Amazon and the wet conditions over southeastern South America (SESA) during the three extreme El Niños: 1982/83, 1997/98, and 2015/16. However, it overestimates the observed intensities over SESA. For the central Peruvian Andes as a case study, results further show that the ESD model can correctly reproduce DJF precipitation anomalies over the entire Mantaro basin during the three extreme El Niño episodes. Moreover, multiple experiments with varying predictor combinations of the ESD model corroborate the hypothesis that the interaction between the South Atlantic convergence zone and the equatorial Atlantic Ocean provoked the Amazon drought in 2015/16.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juan Sulca, sulcaf5@gmail.com
Save
  • Antico, A., and H. F. Diaz, 2019: Why was the Paraná flood of 2016 weaker than that of 1998? Int. J. Climatol., 40, 604609, https://doi.org/10.1002/joc.6204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aybar, C., C. Fernández, A. Huerta, W. Lavado, F. Vega, and O. Felipe-Obando, 2019: Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrol. Sci. J., 65, 770785, https://doi.org/10.1080/02626667.2019.1649411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barreiro, M., P. Chang, and R. Saravanan, 2002: Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model. J. Climate, 15, 745763, https://doi.org/10.1175/1520-0442(2002)015<0745:VOTSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, V., M. Gonzales, B. Liebmann, and I. Camilloni, 2000: Influence of the South Atlantic convergence zone and South Atlantic sea surface temperature on interannual summer rainfall variability in southeastern South America. Theor. Appl. Climatol., 67, 123133, https://doi.org/10.1007/s007040070002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaton, R. H., and J. W. Tukey, 1974: The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics, 16, 147185, https://doi.org/10.1080/00401706.1974.10489171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., I. Hanssen-Bauer, and D. Chen, 2008: Empirical–Statistical Downscaling. World Scientific, 228 pp.

    • Crossref
    • Export Citation
  • Chatterjee, S., and A. S. Hadi, 1986: Influential observations, high leverage points, and outliers in linear regression. Stat. Sci., 1, 379393, https://doi.org/10.1214/ss/1177013622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-S., S.-P. Weng, and S. Schubert, 1999: Maintenance of austral summertime upper-tropospheric circulation over tropical South America: The Bolivian high–Nordeste low system. J. Atmos. Sci., 56, 20812100, https://doi.org/10.1175/1520-0469(1999)056<2081:MOASUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diack, C. A. T., 1999: A consistent nonparametric test of the convexity of regression based on the least squares splines. Eurandom Technical Worker Paper Rep. 99-001, 17 pp., http://alexandria.tue.nl/repository/books/521598.pdf.

  • Dong, B., A. Dai, M. Vuille, and O. E. Timm, 2018: Asymmetric modulation of ENSO teleconnections by the interdecadal Pacific oscillation. J. Climate, 31, 73377361, https://doi.org/10.1175/JCLI-D-17-0663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DuMouchel, W. H., and F. L. O’Brien, 1989: Integrating a robust option into a multiple regression computing environment. Computer Science and Statistics/Proc. 21st Symp. on the Interface, Alexandria, VA, American Statistical Association, 297–302.

  • Echevin, V., F. Colas, D. Espinoza-Morriberon, L. Vasquez, T. Anculle, and D. Gutierrez, 2018: Forcings and evolution of the 2017 coastal El Niño off northern Peru and Ecuador. Front. Mar. Sci., 5, 367, https://doi.org/10.3389/FMARS.2018.00367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emerton, R., H. L. Cloke, E. M. Stephens, E. Zsoter, S. J. Woolnough, and F. Pappenberger, 2017: Complex picture for likelihood of ENSO-driven flood hazard. Nat. Commun., 8, 14796, https://doi.org/10.1038/ncomms14796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., 1996: Relationships of inter-American rainfall to tropical Atlantic and Pacific SST variability. Geophys. Res. Lett., 23, 33053308, https://doi.org/10.1029/96GL03231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfanian, A., G. Wang, and L. Fomenko, 2017: Unprecedented drought over tropical South America in 2016: Significantly under-predicted by tropical SST. Sci. Rep., 7, 5811, https://doi.org/10.1038/s41598-017-05373-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Florax, R., and H. Folmer, 1992: Specification and estimation of spatial linear regression models: Monte Carlo evaluation of pre-test estimators. Reg. Sci. Urban Econ., 22, 405432, https://doi.org/10.1016/0166-0462(92)90037-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A., and R. Mechler, 2017: Managing El Niño risks under uncertainty in Peru: Learning from the past for a more disaster-resilient future. International Institute for Applied Systems Analysis Rep., 39 pp., http://pure.iiasa.ac.at/id/eprint/14849/1/French_Mechler_2017_El%20Ni%C3%B1o_Risk_Peru_Report.pdf.

  • Garreaud, R. D., M. Vuille, R. H. Compagnucci, and J. Marengo, 2009: Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180195, https://doi.org/10.1016/j.palaeo.2007.10.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., B. Huang, J. Zhu, A. Kumar, and M. J. McPhaden, 2019: On the variety of coastal El Niño events. Climate Dyn., 52, 75377552, https://doi.org/10.1007/s00382-018-4290-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huggel, C., A. Raissig, M. Rohrer, G. Romero, A. Diaz, and N. Salzmann, 2015: How useful and reliable are disaster databases in the context of climate and global change? A comparative case study analysis in Peru. Nat. Hazards Earth Syst. Sci., 15, 475485, https://doi.org/10.5194/nhess-15-475-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Instituto Geofísico del Peru, 2005: Vulnerabilidad actual y futura ante el cambio climático y medidas de adaptación en la cuenca del río Mantaro (Current and future vulnerability to climate change and adaptation measures in the Mantaro River basin). CONAM Publ., 107 pp., http://www.met.igp.gob.pe/publicaciones/2000_2007/Vulnerabilidad_actual_futura.pdf.

  • Jauregui, Y. R., and K. Takahashi, 2018: Simple physical-empirical model of the precipitation distribution in the tropical oceans and the effects of climate change. Climate Dyn., 50, 22172237, https://doi.org/10.1007/s00382-017-3745-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., B. Zou, H. Feng, J. Tang, Y. Tu, and X. Zhao, 2019: Spatial distribution mapping of Hg contamination in subclasses agricultural soils using GISS enhanced multiple linear regression. J. Geochem. Explor., 196, 17, https://doi.org/10.1016/j.gexplo.2018.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez-Muñoz, J. C., C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Van der Schrier, 2016: Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep., 6, 33130, https://doi.org/10.1038/srep33130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez-Muñoz, J. C., J. A. Marengo, L. M. Alves, J. C. Sulca, K. Takahashi, S. Ferret, and M. Collins, 2021: The role of ENSO flavours and TNA on recent droughts over Amazon forests and the Northeast Brazil region. Int. J. Climatol., https://doi.org/10.1002/joc.6453, in press.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y., 1992: Large-scale common features of subtropical precipitation zones (the baiu frontal zone, the SPCZ, and the SACZ) Part I: Characteristics of subtropical frontal zones. J. Meteor. Soc. Japan, 70, 813836, https://doi.org/10.2151/jmsj1965.70.4_813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavado, W., C. Fernández, F. Vega, T. Caycho, S. Endara, A. Huerta, and O. F. Obando, 2016: PISCO: Peruvian interpolated data of the SENAMHI’s climatological and hydrological observations. Precipitación v1.0. Servicio Nacional de Meteorología e Hidrología Doc., 5 pp.

  • Lenters, J. D., and K. H. Cook, 1997: On the origin of the Bolivian high and related circulation features of the South American climate. J. Atmos. Sci., 54, 656678, https://doi.org/10.1175/1520-0469(1997)054<0656:OTOOTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and Coauthors, 2016: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 13631382, https://doi.org/10.1175/BAMS-D-16-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, J. Marengo, T. Ambrizzi, and J. D. Glick, 1999: Submonthly convective variability over South America and the South Atlantic convergence zone. J. Climate, 12, 18771891, https://doi.org/10.1175/1520-0442(1999)012<1877:SCVOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., X. Ji, J. D. Neelin, and C. R. Mechoso, 2011: Mechanisms for precipitation variability of the eastern Brazil/SACZ convective margin. J. Climate, 24, 34453456, https://doi.org/10.1175/2011JCLI4070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., B. Liebmann, V. E. Kousky, N. P. Filizola, and I. C. Wainer, 2001: Onset and end of the rainy season in the Brazilian Amazon basin. J. Climate, 14, 833852, https://doi.org/10.1175/1520-0442(2001)014<0833:OAEOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2012: Recent developments on the South American monsoon system. Int. J. Climatol., 32, 121, https://doi.org/10.1002/joc.2254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minvielle, M., and R. D. Garreaud, 2011: Projecting rainfall changes over the South American Altiplano. J. Climate, 24, 45774583, https://doi.org/10.1175/JCLI-D-11-00051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., 2004: An evaluation of the predictability of austral summer season precipitation over South America. J. Climate, 17, 11611175, https://doi.org/10.1175/1520-0442(2004)017<1161:AEOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., P. A. Dirmeyer, B. P. Kirtman, H.-M. H. Juang, and M. Kanamitsu, 2002: Regional simulation of interannual variability over South America. J. Geophys. Res., 107, 8036, https://doi.org/10.1029/2001JD900216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montini, T. L., Ch. Jones, and L. M. V. Carvalho, 2019: The South American low-level jet: A new climatology, variability, and changes. J. Geophys. Res. Atmos., 124, 12001218, https://doi.org/10.1029/2018JD029634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neukom, R., M. Rohrer, P. Calanca, N. Salzmann, C. Huggel, and D. Acuña, 2015: Facing unprecedented drying of the central Andes? Precipitation variability over the period AD 1000–2100. Environ. Res. Lett., 10, 084017, https://doi.org/10.1088/1748-9326/10/8/084017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, Q., S.-P. Xie, D. Wang, X.-T. Zheng, and H. Zhang, 2019: Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño. Nat. Commun., 10, 298, https://doi.org/10.1038/s41467-018-08258-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raia, A., and I. F. A. Cavalcanti, 2008: The life cycle of the South American monsoon system. J. Climate, 21, 62276246, https://doi.org/10.1175/2008JCLI2249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and C. R. Mechoso, 2000: Interannual and interdecadal variability of the South Atlantic convergence zone. Mon. Wea. Rev., 128, 29472957, https://doi.org/10.1175/1520-0493(2000)128<2947:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Morata, C., J. A. Ballesteros-Canovas, M. Rohrer, J.-C. Espinoza, M. Beniston, and M. Stoffel, 2018: Linking atmospheric circulation patterns with hydro-geomorphic disasters in Peru. Int. J. Climatol., 38, 33883404, https://doi.org/10.1002/joc.5507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Morata, C., H. F. Díaz, J. A. Ballesteros-Canovas, M. Rohrer, and M. Stoffel, 2019: The anomalous 2017 coastal El Niño event in Peru. Climate Dyn., 52, 56055622, https://doi.org/10.1007/s00382-018-4466-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sangati, M., and M. Borga, 2009: Influence of rainfall spatial resolution on flash flood modelling. Nat. Hazards Earth Syst. Sci., 9, 575584, https://doi.org/10.5194/nhess-9-575-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segura, H., C. Junquas, J.-C. Espinoza, M. Vuille, Y. R. Jauregui, A. Rabatel, T. Condom, and T. Lebel, 2019: New insights into the rainfall variability in the tropical Andes on seasonal and interannual time scales. Climate Dyn., 53, 405426, https://doi.org/10.1007/s00382-018-4590-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SENAMHI, 2014: El fenómeno de El Niño en el Perú (The El Niño phenomenon in Peru). Servicio Nacional de Meteorología e Hidrología Doc., 33 pp., http://www.minam.gob.pe/wp-content/uploads/2014/07/Dossier-El-Ni%C3%B1o-Final_web.pdf.

  • SENAMHI, 2019: Caracterización espacio temporal de la sequía en los departamentos altoandinos del Perú (1981–2018) [Spatial-temporal characterization of the drought in the high Andean departments of Peru]. Servicio Nacional de Meteorología e Hidrología Doc., 29 pp., https://www.senamhi.gob.pe/load/file/01401SENA-78.pdf.

  • Sharifi, E., B. Saghafian, and R. Steinacker, 2019: Downscaling satellite precipitation estimates with multiple linear regression, artificial neural networks, and spline interpolation techniques. J. Geophys. Res. Atmos., 124, 789805, https://doi.org/10.1029/2018JD028795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva Dias, P. L., W. H. Schubert, and M. De Maria, 1983: Large-scale response of the tropical atmosphere to transient convection. J. Atmos. Sci., 40, 26892707, https://doi.org/10.1175/1520-0469(1983)040<2689:LSROTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulca, J., M. Vuille, Y. Silva, and K. Takahashi, 2016: Teleconnections between the central Peruvian Andes and Northeast Brazil during extreme rainfall events in austral summer. J. Hydrometeor., 17, 499515, https://doi.org/10.1175/JHM-D-15-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulca, J., K. Takahashi, J.-C. Espinoza, M. Vuille, and W. Lavado-Casimiro, 2018: Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int. J. Climatol., 38, 420435, https://doi.org/10.1002/joc.5185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and A. Martínez, 2019: The very strong coastal El Niño in 1925 in the far-eastern Pacific. Climate Dyn., 52, 73897415, https://doi.org/10.1007/s00382-017-3702-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vargas, P., 2009: El cambio climático y sus efectos en el Perú (Climate change and its effects in Peru). Banco Central de Reserva del Perú, Working Papers Series D.T. 2009-14, 59 pp.

  • Vincent, E. M., M. Lengaigne, C. E. Menkes, N. C. Jourdain, P. Marchesiello, and G. Madec, 2011: Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896, https://doi.org/10.1007/s00382-009-0716-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., and F. Keimig, 2004: Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J. Climate, 17, 33343348, https://doi.org/10.1175/1520-0442(2004)017<3334:IVOSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, and F. Keimig, 2000: Interannual climate variability in the central Andes and its relation to tropical Pacific and Atlantic forcing. J. Geophys. Res., 105, 12 44712 460, https://doi.org/10.1029/2000JD900134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., G. Kaser, and I. Juen, 2008: Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Global Planet. Change, 62, 1428, https://doi.org/10.1016/j.gloplacha.2007.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Wu, S., M. Notaro, S. Vavrus, E. Mortensen, R. Montgomery, J. de Piérola, and P. Block, 2018: Efficacy of tendency and linear inverse models to predict southern Peru’s rainy season precipitation. Int. J. Climatol., 38, 25902604, https://doi.org/10.1002/joc.5442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yarleque, C., M. Vuille, D. R. Hardy, A. Posadas, and R. Quiroz, 2016: Multi-scale assessment of spatial precipitation variability over complex mountain terrain using a high-resolution spatiotemporal wavelet reconstruction method. J. Geophys. Res. Atmos., 121, 12 19812 216, https://doi.org/10.1002/2016JD025647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, J., and K. M. Lau, 1998: Does a monsoon climate exist over South America? J. Climate, 11, 10201041, https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 486 0 0
Full Text Views 3574 2477 688
PDF Downloads 903 172 15