Cirrus Cloud Top-of-the-Atmosphere Net Daytime Forcing in the Alaskan Subarctic from Ground-Based MPLNET Monitoring

James R. Campbell Naval Research Laboratory, Monterey, California

Search for other papers by James R. Campbell in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0251-4550
,
Erica K. Dolinar Naval Research Laboratory, Monterey, California
American Society for Engineering Education, Monterey, California

Search for other papers by Erica K. Dolinar in
Current site
Google Scholar
PubMed
Close
,
Simone Lolli Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l’Analisi Ambientale, Tito Scalo, Italy

Search for other papers by Simone Lolli in
Current site
Google Scholar
PubMed
Close
,
Gilberto J. Fochesatto University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Gilberto J. Fochesatto in
Current site
Google Scholar
PubMed
Close
,
Yu Gu University of California Los Angeles, Los Angeles, California

Search for other papers by Yu Gu in
Current site
Google Scholar
PubMed
Close
,
Jasper R. Lewis Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Jasper R. Lewis in
Current site
Google Scholar
PubMed
Close
,
Jared W. Marquis University of North Dakota, Grand Forks, North Dakota

Search for other papers by Jared W. Marquis in
Current site
Google Scholar
PubMed
Close
,
Theodore M. McHardy The University of Arizona, Tucson, Arizona

Search for other papers by Theodore M. McHardy in
Current site
Google Scholar
PubMed
Close
,
David R. Ryglicki Naval Research Laboratory, Monterey, California

Search for other papers by David R. Ryglicki in
Current site
Google Scholar
PubMed
Close
, and
Ellsworth J. Welton NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ellsworth J. Welton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cirrus cloud daytime top-of-the-atmosphere radiative forcing (TOA CRF) is estimated for a 2-yr NASA Micro-Pulse Lidar Network (532 nm; MPLNET) dataset collected at Fairbanks, Alaska. Two-year-averaged daytime TOA CRF is estimated to be between −1.08 and 0.78 W·m−2 (from −0.49 to 1.10 W·m−2 in 2017, and from −1.67 to 0.47 W·m−2 in 2018). This subarctic study completes a now trilogy of MPLNET ground-based cloud forcing investigations, following midlatitude and tropical studies by Campbell et al. at Greenbelt, Maryland, and Lolli et al. at Singapore. Campbell et al. hypothesize a global meridional daytime TOA CRF gradient that begins as positive at the equator (2.20–2.59 W·m−2 over land and from −0.46 to 0.42 W·m−2 over ocean at Singapore), becomes neutral in the midlatitudes (0.03–0.27 W·m−2 over land in Maryland), and turns negative moving poleward. This study does not completely confirm Campbell et al., as values are not found as exclusively negative. Evidence in historical reanalysis data suggests that daytime cirrus forcing in and around the subarctic likely once was exclusively negative. Increasing tropopause heights, inducing higher and colder cirrus, have likely increased regional forcing over the last 40 years. We hypothesize that subarctic interannual cloud variability is likely a considerable influence on global cirrus cloud forcing sensitivity, given the irregularity of polar versus midlatitude synoptic weather intrusions. This study and hypothesis lay the basis for an extrapolation of these MPLNET experiments to satellite-based lidar cirrus cloud datasets.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-20-0077.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James R. Campbell, james.campbell@nrlmry.navy.mil

Abstract

Cirrus cloud daytime top-of-the-atmosphere radiative forcing (TOA CRF) is estimated for a 2-yr NASA Micro-Pulse Lidar Network (532 nm; MPLNET) dataset collected at Fairbanks, Alaska. Two-year-averaged daytime TOA CRF is estimated to be between −1.08 and 0.78 W·m−2 (from −0.49 to 1.10 W·m−2 in 2017, and from −1.67 to 0.47 W·m−2 in 2018). This subarctic study completes a now trilogy of MPLNET ground-based cloud forcing investigations, following midlatitude and tropical studies by Campbell et al. at Greenbelt, Maryland, and Lolli et al. at Singapore. Campbell et al. hypothesize a global meridional daytime TOA CRF gradient that begins as positive at the equator (2.20–2.59 W·m−2 over land and from −0.46 to 0.42 W·m−2 over ocean at Singapore), becomes neutral in the midlatitudes (0.03–0.27 W·m−2 over land in Maryland), and turns negative moving poleward. This study does not completely confirm Campbell et al., as values are not found as exclusively negative. Evidence in historical reanalysis data suggests that daytime cirrus forcing in and around the subarctic likely once was exclusively negative. Increasing tropopause heights, inducing higher and colder cirrus, have likely increased regional forcing over the last 40 years. We hypothesize that subarctic interannual cloud variability is likely a considerable influence on global cirrus cloud forcing sensitivity, given the irregularity of polar versus midlatitude synoptic weather intrusions. This study and hypothesis lay the basis for an extrapolation of these MPLNET experiments to satellite-based lidar cirrus cloud datasets.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-20-0077.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James R. Campbell, james.campbell@nrlmry.navy.mil

Supplementary Materials

    • Supplemental Materials (PDF 1.55 MB)
Save
  • Balmes, K., and Q. Fu, 2018: An investigation of optically very thin ice clouds from ground-based ARM Raman lidars. Atmosphere, 9, 445, https://doi.org/10.3390/atmos9110445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E., and G. G. Mace, 2014: Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J. Geophys. Res. Atmos., 119, 94929508, https://doi.org/10.1002/2014JD021458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. Scott, and I. H. Hwang, 2002: Fulltime, eye-safe cloud and aerosol lidar observation at Atmosphere Radiation Measurement program sites: Instrument and data processing. J. Atmos. Oceanic Technol., 19, 431442, https://doi.org/10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., K. Sassen, and E. J. Welton, 2008: Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles. J. Atmos. Oceanic Technol., 25, 685700, https://doi.org/10.1175/2007JTECHA1034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., M. A. Vaughan, M. Oo, R. E. Holz, J. R. Lewis, and E. J. Welton, 2015: Distinguishing cirrus cloud presence in autonomous lidar measurements. Atmos. Meas. Tech., 8, 435449, https://doi.org/10.5194/amt-8-435-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., S. Lolli, J. R. Lewis, Y. Gu, and E. J. Welton, 2016: Daytime cirrus cloud top-of-atmosphere radiative forcing properties at a midlatitude site and their global consequence. J. Appl. Meteor. Climatol., 55, 16671679, https://doi.org/10.1175/JAMC-D-15-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., and Coauthors, 2018: Unusually deep wintertime cirrus clouds observed over the Alaskan subarctic. Bull. Amer. Meteor. Soc., 99, 2732, https://doi.org/10.1175/BAMS-D-17-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chew, B. N., J. R. Campbell, J. S. Reid, D. M. Giles, E. J. Welton, S. V. Salinas, and S. C. Liew, 2011: Tropical cirrus cloud contamination in sun photometer data. Atmos. Environ., 45, 67246731, https://doi.org/10.1016/j.atmosenv.2011.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolinar, E. K., J. R. Campbell, S. Lolli, S. C. Ozog, J. E. Yorks, C. Camacho, Y. Gu, A. Bucholtz, and M. J. McGill, 2020: Sensitivities in satellite lidar-derived estimates of top-of-the-atmosphere optically-thin cirrus cloud radiative forcing: A case study. Geophys. Res. Lett., 47, e2020GL088871, https://doi.org/10.1029/2020GL088871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garnier, A., J. Pelon, M. A. Vaughan, D. M. Winker, C. R. Trepte, and P. Dubuisson, 2015: Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semitransparent cirrus cloud optical depths over oceans. Atmos. Meas. Tech., 8, 27592774, https://doi.org/10.5194/amt-8-2759-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., J. Farrara, K. N. Liou, and C. R. Mechoso, 2003: Parameterization of cloud–radiation processes in the UCLA general circulation model. J. Climate, 16, 33573370, https://doi.org/10.1175/1520-0442(2003)016<3357:POCPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, https://doi.org/10.1029/2010JD014574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., D. Winker, M. Avery, M. Vaughan, G. Diskin, M. Deng, V. Mitev, and R. Matthey, 2014: Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0° to −86°C: Implications for spaceborne lidar retrievals. J. Appl. Meteor. Climatol., 53, 479505, https://doi.org/10.1175/JAMC-D-13-087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 2018: An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks. Atmos. Chem. Phys., 18, 655671, https://doi.org/10.5194/acp-18-655-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holz, R. E., and Coauthors, 2016: Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals. Atmos. Chem. Phys., 16, 50755090, https://doi.org/10.5194/acp-16-5075-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., G. Liu, and J. F. Li, 2016: Assessing the radiative effects of global ice clouds based on CloudSat and CALIPSO measurements. J. Climate, 29, 76517674, https://doi.org/10.1175/JCLI-D-15-0799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., T. Kushnir, and M. Visbeck, 2001: The North Atlantic Oscillation. Science, 291, 603605, https://doi.org/10.1126/science.1058761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M., and S. Liang, 2006: An improved land surface emissivity parameter for land surface models using global remote sensing observations. J. Climate, 19, 28672881, https://doi.org/10.1175/JCLI3720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., T. P. Charlock, W. L. Smith Jr., and K. Rutledge, 2004: A parameterization of ocean surface albedo. Geophys. Res. Lett., 31, L22301, https://doi.org/10.1029/2004GL021180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. R., J. R. Campbell, E. J. Welton, S. A. Stewart, and P. C. Haftings, 2016: Overview of MPLNET, version 3, cloud detection. J. Atmos. Oceanic Technol., 33, 21132134, https://doi.org/10.1175/JTECH-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. R., J. R. Campbell, S. Lolli, S. A. Stewart I. Tan, and E. J. Welton, 2020: Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar. Atmos. Meas. Tech., 13, 69016913, https://doi.org/10.5194/amt-13-6901-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolli, S., and Coauthors, 2017: Daytime top-of-the-atmosphere cirrus cloud radiative forcing properties at Singapore. J. Appl. Meteor. Climatol., 56, 12491257, https://doi.org/10.1175/JAMC-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, https://doi.org/10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J. W., A. S. Bogdanoff, J. R. Campbell, D. L. Westphal, J. A. Cummings, N. J. Smith, and J. Zhang, 2017: Estimating satellite sea surface temperature retrieval cold biases in the tropics due to unscreened optically thin cirrus clouds. J. Atmos. Oceanic Technol., 34, 355373, https://doi.org/10.1175/JTECH-D-15-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2010: Tropopause-level waveguides. J. Atmos. Sci., 67, 866879, https://doi.org/10.1175/2009JAS2995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pappalardo, G., and Coauthors, 2014: EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech., 7, 23892409, https://doi.org/10.5194/amt-7-2389-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, T. J., G. J. Berry, M. J. Reeder, and N. Nicholls, 2014: Modes of climate variability and heat waves in Victoria, southeastern Australia. Geophys. Res. Lett., 41, 69266934, https://doi.org/10.1002/2014GL061736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Reidi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci., 41, 459473, https://doi.org/10.1109/TGRS.2002.808301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Miins, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, https://doi.org/10.1126/science.243.4887.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., S. Kato, D. R. Doelling, F. G. Rose, L. T. Nguyen, T. E. Caldwell, and N. G. Loeb, 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 11211143, https://doi.org/10.1175/JTECH-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 18481866, https://doi.org/10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285, https://doi.org/10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58, 481496, https://doi.org/10.1175/1520-0469(2001)058<0481:AMCCCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci., 38, 235247, https://doi.org/10.1175/1520-0469(1981)038<0235:CACSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S.-C. Tsay, P. W. Stackhouse Jr., and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 17421753, https://doi.org/10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swap, R. J., H. J. Annegarn, J. T. Suttles, M. D. King, S. Platnick, J. L. Privette, and R. J. Scholes, 2003: Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000). J. Geophys. Res., 108, 8465, https://doi.org/10.1029/2003JD003747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., 2008: Arctic tropospheric warming amplification? Nature, 455, E1E2, https://doi.org/10.1038/nature07256.

  • Virts, K. S., and J. M. Wallace, 2010: Annual, interannual, and intraseasonal variability of tropical tropopause transition layer cirrus. J. Atmos. Sci., 67, 30973112, https://doi.org/10.1175/2010JAS3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welton, E. J., J. R. Campbell, J. D. Spinhirne, and V. S. Scott, 2001: Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems. Proc. SPIE, 4153, 151158, https://doi.org/10.1117/12.417040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111230, https://doi.org/10.1175/2010BAMS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105, 46994718, https://doi.org/10.1029/1999JD900755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mischenko, and Q. Fu, 2005: Scattering and absorption property database for non-spherical ice particles in the near through far-infrared spectral region. Appl. Opt., 44, 55125523, https://doi.org/10.1364/AO.44.005512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, B., A. D. Rapp, P. Yang, B. A. Baum, and M. D. King, 2017: A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Cloud radiative effects. J. Geophys. Res. Atmos., 122, 45504564, https://doi.org/10.1002/2016JD025654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 447 0 0
Full Text Views 2008 945 64
PDF Downloads 723 134 9