Exploring Inland Tropical Cyclone Rainfall and Tornadoes under Future Climate Conditions through a Case Study of Hurricane Ivan

Dereka Carroll-Smith Jackson State University, Jackson, Mississippi
University of Maryland, College Park, College Park, Maryland

Search for other papers by Dereka Carroll-Smith in
Current site
Google Scholar
PubMed
Close
,
Robert J. Trapp University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert J. Trapp in
Current site
Google Scholar
PubMed
Close
, and
James M. Done National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by James M. Done in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The overarching purpose of this study is to investigate the impacts of anthropogenic climate change both on the rainfall and tornadoes associated with tropical cyclones (TCs) making landfall in the U.S. Atlantic basin. The “pseudo–global warming” (PGW) approach is applied to Hurricane Ivan (2004), a historically prolific tropical cyclone tornado (TCT)-producing storm. Hurricane Ivan is simulated under its current climate forcings using the Weather Research and Forecasting Model. This control simulation (CTRL) is then compared with PGW simulations in which the current forcings are modified by climate-change differences obtained from the Community Climate System Model, version 4 (NCAR); Model for Interdisciplinary Research on Climate, version 5 (MIROC); and Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL). Changes in TC intensity, TC rainfall, and TCT production, identified for the PGW-modified Ivan, are documented and analyzed. Relative to CTRL, all three PGW simulations show an increase in TC intensity and generate substantially more accumulated rainfall over the course of Ivan’s progression over land. However, only one of the TCs under PGW (MIROC) produced more TCTs than CTRL. Evidence is provided that, in addition to favorable environmental conditions, TCT production is related to the TC track length and to the strength of the interaction between the TC and an environmental midlevel trough. Enhanced TCT generation at landfall for MIROC and GFDL is attributed to increased values of convective available potential energy, low-level shear, and storm-relative environmental helicity.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dereka Carroll-Smith, dcarrol6@umd.edu

Abstract

The overarching purpose of this study is to investigate the impacts of anthropogenic climate change both on the rainfall and tornadoes associated with tropical cyclones (TCs) making landfall in the U.S. Atlantic basin. The “pseudo–global warming” (PGW) approach is applied to Hurricane Ivan (2004), a historically prolific tropical cyclone tornado (TCT)-producing storm. Hurricane Ivan is simulated under its current climate forcings using the Weather Research and Forecasting Model. This control simulation (CTRL) is then compared with PGW simulations in which the current forcings are modified by climate-change differences obtained from the Community Climate System Model, version 4 (NCAR); Model for Interdisciplinary Research on Climate, version 5 (MIROC); and Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL). Changes in TC intensity, TC rainfall, and TCT production, identified for the PGW-modified Ivan, are documented and analyzed. Relative to CTRL, all three PGW simulations show an increase in TC intensity and generate substantially more accumulated rainfall over the course of Ivan’s progression over land. However, only one of the TCs under PGW (MIROC) produced more TCTs than CTRL. Evidence is provided that, in addition to favorable environmental conditions, TCT production is related to the TC track length and to the strength of the interaction between the TC and an environmental midlevel trough. Enhanced TCT generation at landfall for MIROC and GFDL is attributed to increased values of convective available potential energy, low-level shear, and storm-relative environmental helicity.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dereka Carroll-Smith, dcarrol6@umd.edu
Save
  • Baker, A. K., M. D. Parker, and M. D. Eastin, 2009: Environmental ingredients for supercells and tornadoes within Hurricane Ivan. Wea. Forecasting, 24, 223244, https://doi.org/10.1175/2008WAF2222146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knudson, R. T. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458, https://doi.org/10.1126/science.1180568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll-Smith, D. L., L. C. Dawson, and R. J. Trapp, 2019: High-resolution real-data WRF modeling and verification of tropical cyclone tornadoes associated with Hurricane Ivan (2004). Electron. J. Severe Storms Meteor., 14 (2), https://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/168.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, S. J., and D. K. Lee, 2016: Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations. Adv. Atmos. Sci., 33, 730742, https://doi.org/10.1007/s00376-016-5061-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., 2010: Tropical cyclone tornado records for the modernized NWS era. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P3.1, https://ams.confex.com/ams/25SLS/techprogram/paper_175269.htm.

  • Edwards, R., 2012: Tropical cyclone tornadoes: A review of knowledge in research and prediction. Electron. J. Severe Storms Meteor., 7 (6), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/97.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., A. R. Dean, R. L. Thompson, and B. T. Smith, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part III: Tropical cyclone tornadoes. Wea. Forecasting, 27, 15071519, https://doi.org/10.1175/WAF-D-11-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, https://doi.org/10.1073/pnas.1301293110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2017: Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci. USA, 114, 12 68112 684, https://doi.org/10.1073/pnas.1716222114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, https://doi.org/10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, C., C. Schär, D. Lüthi, and H. C. Davies, 1998: Heavy precipitation processes in a warmer climate. Geophys. Res. Lett., 25, 14311434, https://doi.org/10.1029/98GL51099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentry, R. C., 1983: Genesis of tornadoes associated with hurricanes. Mon. Wea. Rev., 111, 17931805, https://doi.org/10.1175/1520-0493(1983)111<1793:GOTAWH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, https://doi.org/10.1175/MWR-D-12-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., R. M. Rasmussen, L. Changhai, and K. Ikeda, 2018: Changes in hurricanes from a 13-yr convection-permitting pseudo–global warming simulation. J. Climate, 31, 36433657, https://doi.org/10.1175/JCLI-D-17-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoogewind, K. A., M. E. Baldwin, and R. J. Trapp, 2017: The impact of climate change on hazardous convective weather in the United States: Insight from high-resolution dynamical downscaling. J. Climate, 30, 10 08110 100, https://doi.org/10.1175/JCLI-D-16-0885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical consideration regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303E322, https://doi.org/10.1175/BAMS-D-18-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., M. F. Meaux, and D. A. Meaux, 2002: Relationships between tropical cyclone attributes and precipitation totals: Considerations of scale. Int. J. Climatol., 22, 237247, https://doi.org/10.1002/joc.721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2015: Hurricane Sandy before 1900 and after 2100. Bull. Amer. Meteor. Soc., 96, 547560, https://doi.org/10.1175/BAMS-D-14-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B., R. Healy, and L. Druyan, 2009: Investigation of Hurricane Katrina characteristics for future, warmer climates. Climate Res., 39, 7586, https://doi.org/10.3354/cr00801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2016: Bias correcting climate change simulations—A critical review. Curr. Climate Change Rep., 2, 211220, https://doi.org/10.1007/s40641-016-0050-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., 1991: Buoyancy and shear characteristics of hurricane-tornado environments. Mon. Wea. Rev., 119, 19541978, https://doi.org/10.1175/1520-0493(1991)119<1954:bascoh>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendelsohn, R., K. Emanuel, S. Chonabayashi, and L. Bakkensen, 2012: The impact of climate change on global tropical cyclone damage. Nat. Climate Change, 2, 205209, https://doi.org/10.1038/nclimate1357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., J. T. Allen, and A. F. Prein, 2020: Moisture attribution and sensitivity analysis of a winter tornado outbreak. Wea. Forecasting, 35, 12631288, https://doi.org/10.1175/WAF-D-19-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J., D. H. Cha, M. Lee, and J. Kim, 2018: Impact of spectral nudging on real-time tropical cyclone forecast. J. Geophys. Res. Atmos., 123, 12 64712 660, https://doi.org/10.1029/2018JD028550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, T. W., and R. W. Dixon, 2011: Climatology of tornadoes associated with Gulf Coast-landfalling hurricanes. Geogr. Rev., 101, 371395, https://doi.org/10.1111/j.1931-0846.2011.00102.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, T. W., and R. W. Dixon, 2015: Patterns in 500 hPa geopotential height associated with temporal clusters of tropical cyclone tornadoes. Meteor. Appl., 22, 314322, https://doi.org/10.1002/met.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NCEP, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (updated daily). National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 6 December 2015, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • Novlan, D., and W. Gray, 1974: Hurricane-spawned tornadoes. Mon. Wea. Rev., 102, 476488, https://doi.org/10.1175/1520-0493(1974)102<0476:HST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otte, T. L., C. G. Nolte, M. J. Otte, and J. H. Bowden, 2012: Does nudging squelch the extremes in regional climate modeling? J. Climate, 25, 70467066, https://doi.org/10.1175/JCLI-D-12-00048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, C. L., C. L. Bruyère, P. A. Mooney, and A. H. Lynch, 2018: The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia. Climate Dyn., 51, 34673485, https://doi.org/10.1007/s00382-018-4091-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., and M. F. Wehner, 2018: Anthropogenic influences on major tropical cyclone events. Nature, 563, 339346, https://doi.org/10.1038/s41586-018-0673-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017a: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., C. Liu, K. Ikeda, S. B. Trier, R. M. Rasmussen, G. J. Holland, and M. P. Clark, 2017b: Increased rainfall volume from future convective storms in the US. Nat. Climate Change, 7, 880884, https://doi.org/10.1038/s41558-017-0007-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raktham, C., C. Bruyère, J. Kreasuwun, J. Done, C. Thongbai, and W. Promnopas, 2015: Simulation sensitivities of the major weather regimes of the Southeast Asia region. Climate Dyn., 44, 14031417, https://doi.org/10.1007/s00382-014-2156-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., and A. H. Sobel, 2011: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183193, https://doi.org/10.1175/2010JCLI3690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, https://doi.org/10.1175/BAMS-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhodes, C. L., and J. C. Senkbeil, 2014: Factors contributing to tornadogenesis in landfalling Gulf of Mexico tropical cyclones. Meteor. Appl., 21, 940947, https://doi.org/10.1002/met.1437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., F. Kimura, and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333, 144154, https://doi.org/10.1016/j.jhydrol.2006.07.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, https://doi.org/10.1029/96GL00265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, A. Bellucci, M. Zampieri, and A. Navarra, 2013: Heavy precipitation events in a warmer climate: Results from CMIP5 models. J. Climate, 26, 79027911, https://doi.org/10.1175/JCLI-D-12-00850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., and Coauthors, 2017: Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Wea. Climate Extremes, 18, 6574, https://doi.org/10.1016/j.wace.2017.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., 1974: The hurricane disaster-potential scale. Weatherwise, 27, 169186, https://doi.org/10.1080/00431672.1974.9931702.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sobel, A. H., S. J. Camargo, T. M. Hall, C.-Y. Lee, M. K. Tippett, and A. A. Wing, 2016: Human influence on tropical cyclone intensity. Science, 353, 242246, https://doi.org/10.1126/science.aaf6574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2011: Tropical cyclone report: Hurricane Ivan (AL092004), 2–24 September 2004. NHC Tech. Rep., 44 pp., https://www.nhc.noaa.gov/data/tcr/AL092004_Ivan.pdf.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tory, K. J., J. L. McBride, H. Ye, and R. A. Dare, 2013: Projected changes in late-twenty-first century tropical cyclone frequency in 13 coupled climate models from the Coupled Model Intercomparison Project Phase 5. J. Climate, 26, 99469959, https://doi.org/10.1175/JCLI-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and K. Hoogewind, 2016: The realization of extreme tornadic storm events under future anthropogenic climate change. J. Climate, 29, 52515265, https://doi.org/10.1175/JCLI-D-15-0623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., E. Robinson, M. Baldwin, N. Diffenbaugh, and B. J. Schwedler, 2011: Regional climate of hazardous convective weather through high-resolution dynamical downscaling. Climate Dyn., 37, 677688, https://doi.org/10.1007/s00382-010-0826-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., D. M. Schultz, L. M. Leslie, H. E. Brooks, D. J. Karoly, and K. L. Elmore, 2007: Tornado outbreaks associated with landfalling hurricanes in the North Atlantic basin: 1954–2004. Meteor. Atmos. Phys., 97, 255271, https://doi.org/10.1007/s00703-006-0256-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2012: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat. Climate Change, 2, 604607, https://doi.org/10.1038/nclimate1530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate, 26, 32313240, https://doi.org/10.1175/JCLI-D-12-00441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, and J. A. Smith, 2010: Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon. Wea. Rev., 138, 26812705, https://doi.org/10.1175/2010MWR3315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. J., and Coauthors, 2016: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 6589, https://doi.org/10.1002/WCC.371.

    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Wang, and H. Xu, 2013: Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: A case study of Typhoon Megi (2010). Acta Meteor. Sin., 27, 455475, https://doi.org/10.1007/s13351-013-0418-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., 1985: On the operational forecasting of tornadoes associated with tropical cyclones. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 293–296.

All Time Past Year Past 30 Days
Abstract Views 526 0 0
Full Text Views 3325 2341 855
PDF Downloads 886 195 14