• Akimov, I. V., 2004: Precipitation calculation method based on parameterization of distribution function evolution and its performance in global spectral atmospheric model. J. Hydrol., 288, 105120, https://doi.org/10.1016/j.jhydrol.2003.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amiri, M., A. Sadighzadeh, and C. Falamaki, 2016: Experimental parametric study of frequency and sound pressure level on the acoustic coagulation and precipitation of PM2.5 aerosols. Aerosol Air Qual. Res., 16, 30123025, https://doi.org/10.4209/aaqr.2015.12.0683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basset, B. A., 1888: A Treatise on Hydrodynamics. George Bell and Sons, 372 pp.

  • Bhartend, 1969: Audio frequency pressure variations from lightning discharges. J. Atmos. Terr. Phys., 31, 743747.

  • Bodhika, J. A. P., W. G. D. Dharmarathna, M. Fernando, and V. Cooray, 2018: Characteristics of thunder pertinent to tropical lightning. 34th Int. Conf. on Lightning Protection (ICLP), Rzeszow, Poland, Institute of Electrical and Electronics Engineers, 287–292, https://doi.org/10.1109/ICLP.2018.8503455.

    • Crossref
    • Export Citation
  • Cao H, F.-F. Li, X. Zhao, Z.-L. Liu, G.-Q. Wang, and J. Qiu, 2021: Micro-droplet deposition and growth on a glass slide driven by acoustic agglomeration. Exp. Fluids, 62, 127, https://doi.org/10.1007/s00348-021-03215-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleckler, J., S. Elghobashi, and F. Liu, 2012: On the motion of inertial particles by sound waves. Phys. Fluids, 24, 24, https://doi.org/10.1063/1.3696243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S. Z., B. Lipkens, and T. M. Cameron, 2006: The effects of orthokinetic collision, acoustic wake, and gravity on acoustic agglomeration of polydisperse aerosols. J. Aerosol Sci., 37, 540553, https://doi.org/10.1016/j.jaerosci.2005.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, F. X., M. J. Zhang, and C. N. Kim, 2013: Numerical simulation of interaction between two PM2.5 particles under acoustic travelling wave conditions. AIP Conf. Proc., 1542, 855858, https://doi.org/10.1063/1.4812066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finlay, W.H., 2001: Motion of a Single Aerosol Particle in a Fluid. Academic Press, 302 pp.

    • Crossref
    • Export Citation
  • Galechyan, G. A., 2005: On acoustic stimulation of atmospheric precipitation. Tech. Phys., 50, 11911194, https://doi.org/10.1134/1.2051461.

  • Gallego-Juárez, J. A., and Coauthors, 1999: Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants. Environ. Sci. Technol., 33, 38433849, https://doi.org/10.1021/es990002n.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L. P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassan, S., and M. Kawaji, 2008: The effects of vibrations on particle motion in a viscous fluid cell. J. Appl. Mech., 75, 031012, https://doi.org/10.1115/1.2839658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, T. L., 2000: Environmental implications of acoustic aerosol agglomeration. Ultrasonics, 38, 353357, https://doi.org/10.1016/S0041-624X(99)00184-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, S., J. Wu, and B. Xi, 2002: Experimental study on the effect of low-frequency acoustic wave on water mist dissipation (in Chinese). Hydrodyn. Exp. Meas., 16 (4), 5256, 63.

    • Search Google Scholar
    • Export Citation
  • Kačianauskas, R., V. Rimsa, A. Kaceniauskas, A. Maknickas, D. Vainorius, and R. Pacevic, 2018: Comparative DEM-CFD study of binary interaction and acoustic agglomeration of aerosol microparticles at low frequencies. Chem. Eng. Res. Des., 136, 548563, https://doi.org/10.1016/j.cherd.2018.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, I., S. Elghobashi, and W. A. Sirignano, 1998: On the equation for spherical-particle motion: Effect of Reynolds and acceleration numbers. J. Fluid Mech., 367, 221253, https://doi.org/10.1017/S0022112098001657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knoop, C., and U. Fritsching, 2014: Dynamic forces on agglomerated particles caused by high-intensity ultrasound. Ultrasonics, 54, 763769, https://doi.org/10.1016/j.ultras.2013.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K. N., and K. Suzuki, 2019: Assessment of seasonal cloud properties in the United Arab Emirates and adjoining regions from geostationary satellite data. Remote Sens. Environ., 228, 90104, https://doi.org/10.1016/j.rse.2019.04.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, 584 pp.

  • Li, F., Y. Jia, G. Wang, and J. Qiu, 2020: Mechanism of cloud droplet motion under sound wave actions. J. Atmos. Oceanic Technol., 37, 15391550, https://doi.org/10.1175/JTECH-D-19-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., Z. Tian, Y. Zhao, and X. Zeng, 2020: Review and prospect of fog elimination technology based on acoustic condensation. IOP Conf. Ser. Earth Environ. Sci., 514, 032011, https://doi.org/10.1088/1755-1315/514/3/032011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J. Z., G. X. Zhang, J. H. Zhou, J. Wang, W. D. Zhao, and K. F. Cen, 2009: Experimental study of acoustic agglomeration of coal-fired fly ash particles at low frequencies. Powder Technol., 193, 2025, https://doi.org/10.1016/j.powtec.2009.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markauskas, D., R. Kačianauskas, and A. Maknickas, 2015: Numerical particle-based analysis of the effects responsible for acoustic particle agglomeration. Adv. Powder Technol., 26, 698704, https://doi.org/10.1016/j.apt.2014.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxey, M. R., and J. J. Riley, 1983: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26, 883889, https://doi.org/10.1063/1.864230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J. E., 1958: The physics of cloud modification. Adv. Geophys., 5, 223303, https://doi.org/10.1016/S0065-2687(08)60079-5.

  • Mednikov, E. P., and C. V. Larrick, 1965: Acoustic coagulation and precipitation of aerosols. Appl. Mech. Mater., 34, 10871103.

  • Mei, R. W., and R. J. Adrian, 1992: Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech., 237, 323341, https://doi.org/10.1017/S0022112092003434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, R. W., C. J. Lawrence, and R. J. Adrian, 1991: Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity. J. Fluid Mech., 233, 613631, https://doi.org/10.1017/S0022112091000629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oseen, C. W., 1927: Hydrodynamik. Scientia, 22, 343.

  • Otto, E., and H. Fissan, 1999: Brownian coagulation of submicron particles. Adv. Powder Technol., 10 (1), 120, https://doi.org/10.1016/S0921-8831(08)60453-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, J., L. J. Tang, L. Cheng, G. Q. Wang, and F. F. Li, 2021: Interaction between strong sound waves and cloud droplets: Cloud chamber experiment. Appl. Acoust., 176, 107891, https://doi.org/10.1016/j.apacoust.2020.107891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., and J. S. Turner, 1956: On the collision of drops in turbulent clouds. J. Fluid Mech., 1, 1630, https://doi.org/10.1017/S0022112056000020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, 1120 pp.

    • Crossref
    • Export Citation
  • Sepehrirahnama, S., K. M. Lim, and F. S. Chau, 2015: Numerical analysis of the acoustic radiation force and acoustic streaming around a sphere in an acoustic standing wave. Phys. Procedia, 70, 8084, https://doi.org/10.1016/j.phpro.2015.08.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, D. T., and K. W. Tu, 1979: Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols. J. Aerosol Sci., 10, 317328, https://doi.org/10.1016/0021-8502(79)90047-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, C. D., and X. L. Shen, 2006: Modelling of acoustic agglomeration processes using the direct simulation Monte Carlo method. J. Aerosol Sci., 37, 1636, https://doi.org/10.1016/j.jaerosci.2005.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, P.-X., J.-T. Mao, J.-G. Li, A.-S. Zhang, J.-G. Sang, and N.-X. Pan, 2003: Atmospheric Physics. Peking University Press, 375 pp.

  • Sujith, R. I., G. A. Waldherr, J. I. Jagoda, and B. T. Zinn, 1997: An experimental investigation of the behavior of droplets in axial acoustic fields. J. Vib. Acoust., 119, 285292, https://doi.org/10.1115/1.2889722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sujith, R. I., G. A. Waldherr, J. I. Jagoda, and B. T. Zinn, 1999: A theoretical investigation of the behavior of droplets in axial acoustic fields. J. Vib. Acoust., 121, 286294, https://doi.org/10.1115/1.2893978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talty, J. T., 1998: Physics of sound. Industrial Hygiene Engineering, 2nd ed. William Andrew Publishing, 372–389.

    • Crossref
    • Export Citation
  • Tulaikova, T., 2015: Acoustical method and device for precipitation enhancement inside natural clouds. Sci. Discovery, 3, 1825, https://doi.org/10.11648/j.sd.s.2015030201.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Elsevier Science, 483 pp.

  • Wei, J., Y. Li, D. Chen, A. S. Nwankwegu, C. Tang, M. Bu, and S. Zhang, 2020: The influence of ship wave on turbulent structures and sediment exchange in large shallow Lake Taihu, China. J. Hydrol., 586, 124853, https://doi.org/10.1016/j.jhydrol.2020.124853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., J. Qiu, T. Li, Y. Huang, Z. Qiao, J. Cao, D. Zhong, and G. Wang, 2021: Cloud and precipitation interference by strong low-frequency sound wave. Sci. China Technol. Sci., 64, 261272, https://doi.org/10.1007/s11431-019-1564-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieprecht, W., K. Acker, S. Mertes, J. Collett, W. Jaeschke, E. Bruggemann, D. Moller, and H. Herrmann, 2005: Cloud physics and cloud water sampler comparison during FEBUKO. Atmos. Environ., 39, 42674277, https://doi.org/10.1016/j.atmosenv.2005.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Coauthors, 2019: Toward understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus cloud using aircraft observations. Atmos. Res., 221, 2733, https://doi.org/10.1016/j.atmosres.2019.01.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuhua, O. Y., and Y. Ping, 2012: Audible thunder characteristic and the relation between peak frequency and lightning parameters. J. Earth Syst. Sci., 121, 211220, https://doi.org/10.1007/s12040-012-0147-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, C., W. Deng, J. Fan, and Y. D. Zhang, 2020: Effect of flow profiles on the flow subjected to oscillation forcing: An example of droplet mobilization in constricted tubes. J. Hydrol., 583, 124295, https://doi.org/10.1016/j.jhydrol.2019.124295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B., M. Zhu, C. Wang, and X. Guan, 2012: Analysis of cloud droplets growth and phase transition radiation process. Energy Procedia, 16, 10031008, https://doi.org/10.1016/j.egypro.2012.01.160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. X., Z. F. Ma, J. Shen, K. Zhang, J. Q. Wang, and Z. H. Chi, 2020: Experimental study on eliminating fire smokes using acoustic agglomeration technology. J. Hazard. Mater., 382, 121089, https://doi.org/10.1016/j.jhazmat.2019.121089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., C. Gan, and R. Wei, 1963: Preliminary experimental study on the effect of sound wave on water mist dissipation (in Chinese). J. Nanjing Univ., 3, 2127.

    • Search Google Scholar
    • Export Citation
  • Zheng, J. X., Y. K. Li, Z. Q. Wan, W. P. Hong, and L. Wang, 2019: Modification of the agglomeration kernel and simulation of the flow pattern in acoustic field with fine particles. Powder Technol., 356, 930940, https://doi.org/10.1016/j.powtec.2019.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, D., Z. Luo, M. Fang, H. Xu, J. Jiang, Y. Ning, and Z. Shi, 2015: Preliminary experimental study of acoustic agglomeration of coal-fired fine particles. Procedia Eng., 102, 12611270, https://doi.org/10.1016/j.proeng.2015.01.256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zu, K., Y. Yao, M. Cai, F. Zhao, and D. L. Cheng, 2017: Modeling and experimental study on acoustic agglomeration for dust particle removal. J. Aerosol Sci., 114, 6276, https://doi.org/10.1016/j.jaerosci.2017.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 544 202 0
Full Text Views 191 131 34
PDF Downloads 176 105 29

Interaction between Strong Sound Waves and Cloud Droplets: Theoretical Analysis

Ying-Hui JiaaCollege of Water Resources and Civil Engineering, China Agricultural University, Beijing, China

Search for other papers by Ying-Hui Jia in
Current site
Google Scholar
PubMed
Close
,
Fang-Fang LiaCollege of Water Resources and Civil Engineering, China Agricultural University, Beijing, China

Search for other papers by Fang-Fang Li in
Current site
Google Scholar
PubMed
Close
,
Kun FangbState Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China

Search for other papers by Kun Fang in
Current site
Google Scholar
PubMed
Close
,
Guang-Qian WangbState Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China
cState Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China

Search for other papers by Guang-Qian Wang in
Current site
Google Scholar
PubMed
Close
, and
Jun QiubState Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China
cState Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China

Search for other papers by Jun Qiu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recently, strong sound wave was proposed to enhance precipitation. The theoretical basis of this proposal has not been effectively studied either experimentally or theoretically. On the basis of the microscopic parameters of atmospheric cloud physics, this paper solved the complex nonlinear differential equation to show the movement characteristics of cloud droplets under the action of sound waves. The motion process of an individual cloud droplet in a cloud layer in the acoustic field is discussed as well as the relative motion between two cloud droplets. The effects of different particle sizes and sound field characteristics on particle motion and collision are studied to analyze the dynamic effects of thunder-level sound waves on cloud droplets. The amplitude of velocity variation has positive correlation with sound pressure level (SPL) and negative correlation with the frequency of the surrounding sound field. Under the action of low-frequency sound waves with sufficient intensity, individual cloud droplets could be forced to oscillate significantly. A droplet smaller than 40 μm can be easily driven by sound waves of 50 Hz and 123.4 dB. The calculation of the collision process of two droplets reveals that the disorder of motion for polydisperse droplets is intensified, resulting in the broadening of the collision time range and spatial range. When the acoustic frequency is less than 100 Hz (at 123.4 dB) or the SPL is greater than 117.4 dB (at 50 Hz), the sound wave can affect the collision of cloud droplets significantly. This study provides a theoretical perspective of the acoustic effect on the microphysics of atmospheric clouds.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jun Qiu, aeroengine@tsinghua.edu.cn

Abstract

Recently, strong sound wave was proposed to enhance precipitation. The theoretical basis of this proposal has not been effectively studied either experimentally or theoretically. On the basis of the microscopic parameters of atmospheric cloud physics, this paper solved the complex nonlinear differential equation to show the movement characteristics of cloud droplets under the action of sound waves. The motion process of an individual cloud droplet in a cloud layer in the acoustic field is discussed as well as the relative motion between two cloud droplets. The effects of different particle sizes and sound field characteristics on particle motion and collision are studied to analyze the dynamic effects of thunder-level sound waves on cloud droplets. The amplitude of velocity variation has positive correlation with sound pressure level (SPL) and negative correlation with the frequency of the surrounding sound field. Under the action of low-frequency sound waves with sufficient intensity, individual cloud droplets could be forced to oscillate significantly. A droplet smaller than 40 μm can be easily driven by sound waves of 50 Hz and 123.4 dB. The calculation of the collision process of two droplets reveals that the disorder of motion for polydisperse droplets is intensified, resulting in the broadening of the collision time range and spatial range. When the acoustic frequency is less than 100 Hz (at 123.4 dB) or the SPL is greater than 117.4 dB (at 50 Hz), the sound wave can affect the collision of cloud droplets significantly. This study provides a theoretical perspective of the acoustic effect on the microphysics of atmospheric clouds.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jun Qiu, aeroengine@tsinghua.edu.cn
Save