• Agilan, V., and N. Umamahesh, 2016: Modelling nonlinear trend for developing non-stationary rainfall intensity–duration–frequency curve. Int. J. Climatol., 37, 12651281, https://doi.org/10.1002/joc.4774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argüeso, D., J. P. Evans, L. Fita, and K. J. Bormann, 2014: Temperature response to future urbanization and climate change. Climate Dyn., 42, 21832199, https://doi.org/10.1007/s00382-013-1789-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42, 11651172, https://doi.org/10.1002/2014GL062588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., and Coauthors, 2021: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: Evaluation of precipitation. Climate Dyn., 57, 275302, https://doi.org/10.1007/s00382-021-05708-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. Miralles, A. I. van Dijk, T. R. McVicar, and R. F. Adler, 2019: MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473500, https://doi.org/10.1175/BAMS-D-17-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beirlant, J., Y. Goegebeur, J. Segers, and J. Teugels, 2004: Statistics of Extremes: Theory and Applications. John Wiley and Sons, 512 pp.

  • Berg, P., O. B. Christensen, K. Klehmet, G. Lenderink, J. Olsson, C. Teichmann, and W. Yang, 2019: Summertime precipitation extremes in a EURO-CORDEX 0.11° ensemble at an hourly resolution. Nat. Hazards Earth Syst. Sci., 19, 957971, https://doi.org/10.5194/nhess-19-957-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brisson, E., M. Demuzere, and N. P. van Lipzig, 2016a: Modelling strategies for performing convection-permitting climate simulations. Meteor. Z., 25, 149163, https://doi.org/10.1127/metz/2015/0598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brisson, E., K. Van Weverberg, M. Demuzere, A. Devis, S. Saeed, M. Stengel, and N. P. M. van Lipzig, 2016b: How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Climate Dyn., 47, 30433061, https://doi.org/10.1007/s00382-016-3012-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bubnová, R., G. Hello, P. Bénard, and J.-F. Geleyn, 1995: Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Wea. Rev., 123, 515535, https://doi.org/10.1175/1520-0493(1995)123<0515:IOTFEE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burlando, P., and R. Rosso, 1996: Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation. J. Hydrol., 187, 4564, https://doi.org/10.1016/S0022-1694(96)03086-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandler, R. E., and E. M. Scott, 2011: Statistical Methods for Trend Detection and Analysis in the Environmental Sciences. John Wiley and Sons, 368 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez-Demoulin, V., and A. C. Davison, 2012: Modelling time series extremes. REVSTAT. Stat. J., 10, 109133.

  • Cheng, L., and A. AghaKouchak, 2014: Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Sci. Rep., 4, 7093, https://doi.org/10.1038/srep07093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, 208 pp.

  • Cooley, D., 2005: Statistical analysis of extremes motivated by weather and climate studies: Applied and theoretical advances. Ph.D. thesis, University of Colorado, 110 pp., https://www.stat.colostate.edu/~cooleyd/Papers/cooley2.pdf.

  • Cooley, D., P. Naveau, and P. Poncet, 2006: Variograms for spatial max-stable random fields. Dependence in Probability and Statistics, P. Bertail, P. Soulier, and P. Doukhan, Eds., Springer, 373–390.

    • Crossref
    • Export Citation
  • Cooley, D., J. Cisewski, R. J. Erhardt, S. Jeon, E. Mannshardt, B. O. Omolo, and Y. Sun, 2012: A survey of spatial extremes: Measuring spatial dependence and modeling spatial effects. REVSTAT. Stat. J., 10, 135165.

    • Search Google Scholar
    • Export Citation
  • Coppola, E., and Coauthors, 2020: A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dyn., 55, 334, https://doi.org/10.1007/s00382-018-4521-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortés-Hernández, V. E., F. Zheng, J. Evans, M. Lambert, A. Sharma, and S. Westra, 2016: Evaluating regional climate models for simulating sub-daily rainfall extremes. Climate Dyn., 47, 16131628, https://doi.org/10.1007/s00382-015-2923-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, A. C., and M. M. Gholamrezaee, 2011: Geostatistics of extremes. Proc. Roy. Soc., 468A, 581608, https://doi.org/10.1098/rspa.2011.0412.

    • Search Google Scholar
    • Export Citation
  • Davison, A. C., S. A. Padoan, and M. Ribatet, 2012: Statistical modeling of spatial extremes. Stat. Sci., 27, 161186, https://doi.org/10.1214/11-STS376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Ridder, K., and H. Gallée, 1998: Land surface-induced regional climate change in southern Israel. J. Appl. Meteor., 37, 14701485, https://doi.org/10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Troch, R., R. Hamdi, H. Van de Vyver, J.-F. Geleyn, and P. Termonia, 2013: Multiscale performance of the ALARO-0 model for simulating extreme summer precipitation climatology in Belgium. J. Climate, 26, 88958915, https://doi.org/10.1175/JCLI-D-12-00844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Troch, R., and Coauthors, 2014: Overview of a few regional climate models and climate scenarios for Belgium. Royal Meteorological Institute of Belgium Doc., 32 pp., http://doi.org/10.13140/2.1.4710.5604.

    • Crossref
    • Export Citation
  • EEA, 2019: Economic losses from climate-related extremes in Europe. European Environment Agency, https://www.eea.europa.eu/data-and-maps/indicators/direct-losses-from-weather-disasters-4/assessment.

  • Fosser, G., S. Khodayar, and P. Berg, 2015: Benefit of convection permitting climate model simulations in the representation of convective precipitation. Climate Dyn., 44, 4560, https://doi.org/10.1007/s00382-014-2242-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fosser, G., S. Khodayar, and P. Berg, 2017: Climate change in the next 30 years: What can a convection-permitting model tell us that we did not already know? Climate Dyn., 48, 19872003, https://doi.org/10.1007/s00382-016-3186-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallée, H., and G. Schayes, 1994: Development of a three-dimensional meso-γ primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon. Wea. Rev., 122, 671685, https://doi.org/10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerard, L., J.-M. Piriou, R. Brožková, J.-F. Geleyn, and D. Banciu, 2009: Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model. Mon. Wea. Rev., 137, 39603977, https://doi.org/10.1175/2009MWR2750.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., and E. Waymire, 1990: Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys. Res., 95, 19992009, https://doi.org/10.1029/JD095iD03p01999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helsen, S., and Coauthors, 2020: Consistent scale-dependency of future increases in hourly extreme precipitation in two convection-permitting climate models. Climate Dyn., 54, 12671280, https://doi.org/10.1007/s00382-019-05056-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobæk Haff, I., A. Frigessi, and D. Maraun, 2015: How well do regional climate models simulate the spatial dependence of precipitation? An application of pair-copula constructions. J. Geophys. Res. Atmos., 120, 26242646, https://doi.org/10.1002/2014JD022748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2014: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, https://doi.org/10.1007/s10113-013-0499-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2020: Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Environ. Change, 20, 51, https://doi.org/10.1007/s10113-020-01606-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 4, 570576, https://doi.org/10.1038/nclimate2258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., and Coauthors, 2017: Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Amer. Meteor. Soc., 98, 7993, https://doi.org/10.1175/BAMS-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenker, R., 2005: Quantile Regression. Cambridge University Press, 349 pp.

  • Koenker, R., 2018: quantreg: Quantile regression. http://CRAN.R-project.org/package=quantreg.

  • Koenker, R., and J. A. F. Machado, 1999: Goodness of fit and related inference processes for quantile regression. J. Amer. Stat. Assoc., 94, 12961310, https://doi.org/10.1080/01621459.1999.10473882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leadbetter, M., G. Lindgren, and H. Rootzén, 1983: Extremes and Related Properties of Random Sequences and Processes. Springer, 336 pp.

  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, https://doi.org/10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2010: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett., 5, 025208, https://doi.org/10.1088/1748-9326/5/2/025208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lugrin, T., A. C. Davison, and J. A. Tawn, 2016: Bayesian uncertainty management in temporal dependence of extremes. Extremes, 19, 491515, https://doi.org/10.1007/s10687-016-0258-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., H. W. Rust, and T. J. Osborn, 2009: The annual cycle of heavy precipitation across the United Kingdom: A model based on extreme value statistics. Int. J. Climatol., 29, 17311744, https://doi.org/10.1002/joc.1811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., T. J. Osborn, and H. W. Rust, 2012: The influence of synoptic airflow on UK daily precipitation extremes. Part II: Regional climate model and E-OBS data validation. Climate Dyn., 39, 287301, https://doi.org/10.1007/s00382-011-1176-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martel, J.-L., A. Mailhot, and F. Brissette, 2020: Global and regional projected changes in 100-yr subdaily, daily, and multiday precipitation extremes estimated from three large ensembles of climate simulations. J. Climate, 33, 10891103, https://doi.org/10.1175/JCLI-D-18-0764.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Met Office, 2021: UK Climate Projections (UKCP). Met Office, accessed 14 July 2021, https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/index/.

  • Naveau, P., A. Guillou, D. Cooley, and J. Diebolt, 2009: Modeling pairwise dependence of maxima in space. Biometrika, 96, 117, https://doi.org/10.1093/biomet/asp001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ntegeka, V., and P. Willems, 2008: Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium. Water Resour. Res., 44, W07402, https://doi.org/10.1029/2007WR006471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsson, J., P. Berg, and A. Kawamura, 2015: Impact of RCM spatial resolution on the reproduction of local, subdaily precipitation. J. Hydrometeor., 16, 534547, https://doi.org/10.1175/JHM-D-14-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., L. A. Yousef, and C. Charron, 2018: Non-stationary intensity-duration-frequency curves integrating information concerning teleconnections and climate change. Int. J. Climatol., 39, 23062323, https://doi.org/10.1002/joc.5953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L.-L., S.-H. Chen, D. Cayan, M.-Y. Lin, Q. Hart, M.-H. Zhang, Y. Liu, and J. Wang, 2011: Influences of climate change on California and Nevada regions revealed by a high-resolution dynamical downscaling study. Climate Dyn., 37, 20052020, https://doi.org/10.1007/s00382-010-0961-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenge. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2016: Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Climate Dyn., 46, 383412, https://doi.org/10.1007/s00382-015-2589-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, S., J. Christensen, M. Drews, D. Gochis, and J. Refsgaard, 2012: Spatial scale characteristics of precipitation simulated by regional climate models and the implications for hydrological modelling. J. Hydrometeor., 13, 18171835, https://doi.org/10.1175/JHM-D-12-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reszler, C., M. B. Switanek, and H. Truhetz, 2018: Convection-permitting regional climate simulations for representing floods in small- and medium-sized catchments in the Eastern Alps. Nat. Hazards Earth Syst. Sci., 18, 26532674, https://doi.org/10.5194/nhess-18-2653-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribatet, M., R. Singleton, and R Core Team, 2013: SpatialExtremes: Modelling spatial extremes, version 2.0-0 R package, https://CRAN.R-project.org/package=SpatialExtremes.

  • Rockel, B., A. Will, and A. Hense, 2008: The regional climate model COSMO-CLM (CCLM). Meteor. Z., 17, 347348, https://doi.org/10.1127/0941-2948/2008/0309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and Coauthors, 2020: Kilometer-scale climate models: Prospects and challenges. Bull. Amer. Meteor. Soc., 101, E567E587, https://doi.org/10.1175/BAMS-D-18-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schindler, A., D. Maraun, and J. Luterbacher, 2012: Validation of the present day annual cycle in heavy precipitation over the British Islands simulated by 14 RCMs. J. Geophys. Res., 117, D18107, https://doi.org/10.1029/2012JD017828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shikano, S., 2019: Hypothesis testing in the Bayesian framework. Swiss Political Sci. Rev., 25, 288299, https://doi.org/10.1111/spsr.12375.

  • Smith, R. L., and I. Weissman, 1994: Estimating the extremal index. J. Roy. Stat. Soc., 56B, 515528, https://doi.org/10.1111/j.2517-6161.1994.tb01997.x.

    • Search Google Scholar
    • Export Citation
  • Tabari, H., and Coauthors, 2016: Local impact analysis of climate change on precipitation extremes: Are high-resolution climate models needed for realistic simulations? Hydrol. Earth Syst. Sci., 20, 38433857, https://doi.org/10.5194/hess-20-3843-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Termonia, P., and Coauthors, 2018a: The ALADIN system and its canonical model configurations AROME CY41T1 and ALARO CY40T1. Geosci. Model Dev., 11, 257281, https://doi.org/10.5194/gmd-11-257-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Termonia, P., and Coauthors, 2018b: The CORDEX.be initiative as a foundation for climate services in Belgium. Climate Serv., 11, 4961, https://doi.org/10.1016/j.cliser.2018.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torma, C., F. Giorgi, and E. Coppola, 2015: Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps. J. Geophys. Res., 120, 39573972, https://doi.org/10.1002/2014JD022781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Vyver, H., 2012: Spatial regression models for extreme precipitation in Belgium. Water Resour. Res., 48, W09549, https://doi.org/10.1029/2011WR011707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Vyver, H., 2015a: Bayesian estimation of rainfall intensity-duration-frequency relationships. J. Hydrol., 529, 14511463, https://doi.org/10.1016/j.jhydrol.2015.08.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Vyver, H., 2015b: On the estimation of continuous 24-h precipitation maxima. Stochastic Environ. Res. Risk Assess., 29, 653663, https://doi.org/10.1007/s00477-014-0912-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Vyver, H., 2018: A multiscaling-based intensity-duration-frequency model for extreme precipitation. Hydrol. Processes, 32, 16351647, https://doi.org/10.1002/hyp.11516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Vyver, H., 2021: R code for Bayesian estimation of rainfall intensity–duration–frequency (IDF) relationships (version V1). Zenodo, https://doi.org/10.5281/zenodo.4644184.

    • Crossref
    • Export Citation
  • Van de Vyver, H., B. Van Schaeybroeck, R. De Troch, R. Hamdi, and P. Termonia, 2019: Modeling the scaling of short-duration precipitation extremes with temperature. Earth Space Sci., 6, 20312041, https://doi.org/10.1029/2019EA000665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Vyver, H., B. Van Schaeybroeck, R. De Troch, R. Hamdi, and P. Termonia, 2021: R code for modeling the scaling of short-duration precipitation extremes with temperature (version V1). Zenodo, https://doi.org/10.5281/zenodo.4644567.

    • Crossref
    • Export Citation
  • Vannière, B., and Coauthors, 2019: Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution. Climate Dyn., 52, 68176846, https://doi.org/10.1007/s00382-018-4547-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and P. Naveau, 2007: Spatial dependences among precipitation maxima over Belgium. Nonlinear Processes Geophys., 14, 621630, https://doi.org/10.5194/npg-14-621-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., E. Goudenhoofdt, U. Blahak, E. Brisson, M. Demuzere, P. Marbaix, and J.-P. van Ypersele, 2014: Comparison of one-moment and two-moment bulk microphysics for high-resolution climate simulations of intense precipitation. Atmos. Res., 147–148, 145161, https://doi.org/10.1016/j.atmosres.2014.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., and A. Sharma, 2014: Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resour. Res., 50, 36083614, https://doi.org/10.1002/2013WR015194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys., 52, 522555, https://doi.org/10.1002/2014RG000464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willems, P., 2000: Compound intensity/duration/frequency-relationships of extreme precipitation for two seasons and two storm types. J. Hydrol., 233, 189205, https://doi.org/10.1016/S0022-1694(00)00233-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wouters, H., M. Demuzere, U. Blahak, K. Fortuniak, B. Maiheu, J. Camps, D. Tielemans, and N. P. M. van Lipzig, 2016: The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: Description and application with the COSMO-CLM model for a Belgian summer. Geosci. Model Dev., 9, 30273054, https://doi.org/10.5194/gmd-9-3027-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyard, C., C. Scholzen, X. Fettweis, J. Van Campenhout, and L. François, 2017: Decrease in climatic conditions favouring floods in the south-east of Belgium over 1959-2010 using the regional climate model MAR. Int. J. Climatol., 37, 27822796, https://doi.org/10.1002/joc.4879.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 491 238 0
Full Text Views 316 237 103
PDF Downloads 252 171 45

Evaluation Framework for Subdaily Rainfall Extremes Simulated by Regional Climate Models

Hans Van de VyveraRoyal Meteorological Institute, Brussels, Belgium

Search for other papers by Hans Van de Vyver in
Current site
Google Scholar
PubMed
Close
,
Bert Van SchaeybroeckaRoyal Meteorological Institute, Brussels, Belgium

Search for other papers by Bert Van Schaeybroeck in
Current site
Google Scholar
PubMed
Close
,
Rozemien De TrochaRoyal Meteorological Institute, Brussels, Belgium

Search for other papers by Rozemien De Troch in
Current site
Google Scholar
PubMed
Close
,
Lesley De CruzaRoyal Meteorological Institute, Brussels, Belgium

Search for other papers by Lesley De Cruz in
Current site
Google Scholar
PubMed
Close
,
Rafiq HamdiaRoyal Meteorological Institute, Brussels, Belgium

Search for other papers by Rafiq Hamdi in
Current site
Google Scholar
PubMed
Close
,
Cecille Villanueva-BirrielbEarth and Life Institute, Georges Lemaître Centre for Earth and Climate Research, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Search for other papers by Cecille Villanueva-Birriel in
Current site
Google Scholar
PubMed
Close
,
Philippe MarbaixbEarth and Life Institute, Georges Lemaître Centre for Earth and Climate Research, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Search for other papers by Philippe Marbaix in
Current site
Google Scholar
PubMed
Close
,
Jean-Pascal van YperselebEarth and Life Institute, Georges Lemaître Centre for Earth and Climate Research, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Search for other papers by Jean-Pascal van Ypersele in
Current site
Google Scholar
PubMed
Close
,
Hendrik WouterscDepartment of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Leuven, Belgium

Search for other papers by Hendrik Wouters in
Current site
Google Scholar
PubMed
Close
,
Sam Vanden BrouckecDepartment of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Leuven, Belgium

Search for other papers by Sam Vanden Broucke in
Current site
Google Scholar
PubMed
Close
,
Nicole P. M. van LipzigcDepartment of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Leuven, Belgium

Search for other papers by Nicole P. M. van Lipzig in
Current site
Google Scholar
PubMed
Close
,
Sébastien DoutreloupdLaboratory of Climatology, Department of Geography, UR SPHERES, Université de Liège, Liège, Belgium

Search for other papers by Sébastien Doutreloup in
Current site
Google Scholar
PubMed
Close
,
Coraline WyarddLaboratory of Climatology, Department of Geography, UR SPHERES, Université de Liège, Liège, Belgium

Search for other papers by Coraline Wyard in
Current site
Google Scholar
PubMed
Close
,
Chloé ScholzendLaboratory of Climatology, Department of Geography, UR SPHERES, Université de Liège, Liège, Belgium

Search for other papers by Chloé Scholzen in
Current site
Google Scholar
PubMed
Close
,
Xavier FettweisdLaboratory of Climatology, Department of Geography, UR SPHERES, Université de Liège, Liège, Belgium

Search for other papers by Xavier Fettweis in
Current site
Google Scholar
PubMed
Close
,
Steven CaluwaertsaRoyal Meteorological Institute, Brussels, Belgium
eDepartment of Physics and Astronomy, Ghent University, Ghent, Belgium

Search for other papers by Steven Caluwaerts in
Current site
Google Scholar
PubMed
Close
, and
Piet TermoniaaRoyal Meteorological Institute, Brussels, Belgium
eDepartment of Physics and Astronomy, Ghent University, Ghent, Belgium

Search for other papers by Piet Termonia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Subdaily precipitation extremes are high-impact events that can result in flash floods, sewer system overload, or landslides. Several studies have reported an intensification of projected short-duration extreme rainfall in a warmer future climate. Traditionally, regional climate models (RCMs) are run at a coarse resolution using deep-convection parameterization for these extreme events. As computational resources are continuously ramping up, these models are run at convection-permitting resolution, thereby partly resolving the small-scale precipitation events explicitly. To date, a comprehensive evaluation of convection-permitting models is still missing. We propose an evaluation strategy for simulated subdaily rainfall extremes that summarizes the overall RCM performance. More specifically, the following metrics are addressed: the seasonal/diurnal cycle, temperature and humidity dependency, temporal scaling, and spatiotemporal clustering. The aim of this paper is as follows: (i) to provide a statistical modeling framework for some of the metrics, based on extreme value analysis, (ii) to apply the evaluation metrics to a microensemble of convection-permitting RCM simulations over Belgium against high-frequency observations, and (iii) to investigate the added value of convection-permitting scales with respect to coarser 12-km resolution. We find that convection-permitting models improved precipitation extremes on shorter time scales (i.e., hourly or 2 hourly), but not on 6–24-h time scales. Some metrics such as the diurnal cycle or the Clausius–Clapeyron rate are improved by convection-permitting models, whereas the seasonal cycle appears to be robust across spatial scales. On the other hand, the spatial dependence is poorly represented at both convection-permitting scales and coarser scales. Our framework provides perspectives for improving high-resolution atmospheric numerical modeling and datasets for hydrological applications.

Villanueva-Birriel’s current affiliation: NOAA/National Weather Service, San Juan, Puerto Rico.

Wyard’s current affiliation: Remote Sensing and Geodata Unit, Institut Scientifique de Service Public, Liège, Belgium.

Scholzen’s current affiliation: Department of Geosciences, University of Oslo, Oslo, Norway.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hans Van de Vyver, hvijver@meteo.be

Abstract

Subdaily precipitation extremes are high-impact events that can result in flash floods, sewer system overload, or landslides. Several studies have reported an intensification of projected short-duration extreme rainfall in a warmer future climate. Traditionally, regional climate models (RCMs) are run at a coarse resolution using deep-convection parameterization for these extreme events. As computational resources are continuously ramping up, these models are run at convection-permitting resolution, thereby partly resolving the small-scale precipitation events explicitly. To date, a comprehensive evaluation of convection-permitting models is still missing. We propose an evaluation strategy for simulated subdaily rainfall extremes that summarizes the overall RCM performance. More specifically, the following metrics are addressed: the seasonal/diurnal cycle, temperature and humidity dependency, temporal scaling, and spatiotemporal clustering. The aim of this paper is as follows: (i) to provide a statistical modeling framework for some of the metrics, based on extreme value analysis, (ii) to apply the evaluation metrics to a microensemble of convection-permitting RCM simulations over Belgium against high-frequency observations, and (iii) to investigate the added value of convection-permitting scales with respect to coarser 12-km resolution. We find that convection-permitting models improved precipitation extremes on shorter time scales (i.e., hourly or 2 hourly), but not on 6–24-h time scales. Some metrics such as the diurnal cycle or the Clausius–Clapeyron rate are improved by convection-permitting models, whereas the seasonal cycle appears to be robust across spatial scales. On the other hand, the spatial dependence is poorly represented at both convection-permitting scales and coarser scales. Our framework provides perspectives for improving high-resolution atmospheric numerical modeling and datasets for hydrological applications.

Villanueva-Birriel’s current affiliation: NOAA/National Weather Service, San Juan, Puerto Rico.

Wyard’s current affiliation: Remote Sensing and Geodata Unit, Institut Scientifique de Service Public, Liège, Belgium.

Scholzen’s current affiliation: Department of Geosciences, University of Oslo, Oslo, Norway.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hans Van de Vyver, hvijver@meteo.be

Supplementary Materials

    • Supplemental Materials (PDF 205 KB)
Save