Abstract
According to the high-accuracy linear shape–slope (μ–Λ) relationship observed by several two-dimensional video disdrometers (2DVD) in South China, a high-precision and fast solution method of the gamma (Γ) raindrop size distribution (RSD) function based on the zeroth-order moment (M0) and the third-order moment (M3) of RSD has been proposed. The 0-moment M0 and 3-moment M3 of RSD can be easily calculated from rain mass mixing ratio Qr and total number concentration Ntr simulated by the two-moment (2M) microphysical scheme, respectively. Three typical heavy-rainfall processes and all RSD samples observed during 2019 in South China were selected to verify the accuracy of the method. Relative to the current widely used exponential RSD with a fixed shape parameter of zero in the 2M microphysical scheme, the Γ RSD function using the linear constrained gamma (C-G) method agreed better with the Γ-fit RSD from 2DVD observations. The characteristic precipitation parameters (e.g., rain rate, M2, M6, and M9) obtained by the proposed method are generally consistent with the parameters calculated by Γ-fit RSD from 2DVD observations. The proposed method has effectively solved the problem that the shape parameter in the 2M microphysical scheme is set to a constant, and therefore the Γ RSD functions are closer to the observations and have obviously smaller errors. This method has a good potential to be applied to 2M microphysical schemes to improve the simulation of heavy precipitation in South China, but it also paves the way for in-depth applications of radar data in numerical weather prediction models.
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).