• Agee, E., and S. Childs, 2014: Adjustments in tornado counts, F-scale intensity, and path width for assessing significant tornado destruction. J. Appl. Meteor. Climatol., 53, 14941505, https://doi.org/10.1175/JAMC-D-13-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. J. Molina, and V. A. Gensini, 2018: Modulation of annual cycle of tornadoes by El Niño–Southern Oscillation. Geophys. Res. Lett., 45, 57085717, https://doi.org/10.1029/2018GL077482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and S. M. Strader, 2016: Recipe for disaster: How the dynamic ingredients of risk and exposure are changing the tornado disaster landscape. Bull. Amer. Meteor. Soc., 97, 767786, https://doi.org/10.1175/BAMS-D-15-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., S. M. Strader, T. Rosencrants, and A. J. Krmenec, 2014: Spatiotemporal changes in tornado hazard exposure: The case of the expanding bull’s-eye effect in Chicago, Illinois. Wea. Climate Soc., 6, 175193, https://doi.org/10.1175/WCAS-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., M. R. Kumjian, R. D. Palmer, P. L. Heinselman, and A. V. Ryzhkov, 2013: Tornado damage estimation using polarimetric radar. Wea. Forecasting, 28, 139158, https://doi.org/10.1175/WAF-D-11-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2004: On the relationship of tornado path length and width to intensity. Wea. Forecasting, 19, 310319, https://doi.org/10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and C. A. Doswell III, 2001: Some aspects of the international climatology of tornadoes by damage classification. Atmos. Res., 56, 191201, https://doi.org/10.1016/S0169-8095(00)00098-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., G. W. Carbin, and P. T. Marsh, 2014: Increased variability of tornado occurrence in the United States. Science, 346, 349352, https://doi.org/10.1126/science.1257460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., and Coauthors, 2014: 20 May 2013 Moore, Oklahoma, Tornado: Damage survey and analysis. Wea. Forecasting, 29, 12291237, https://doi.org/10.1175/WAF-D-14-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camp, P. J., 2008: Integrating a geographical information system into storm assessment: The southeast Alabama tornado outbreak of 1 March 2007. 24th Conf. on Interactive Information Processing Technologies, New Orleans, LA, Amer. Meteor. Soc., P1.4, https://ams.confex.com/ams/pdfpapers/134401.pdf.

  • Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366376, https://doi.org/10.1175/WAF-D-13-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Concannon, P. R., H. E. Brooks, and C. A. Doswell III, 2000: Climatological risk of strong to violent tornadoes in the United States. Second Symp. on Environmental Applications, Long Beach, CA, Amer. Meteor. Soc., 212–219.

  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691687, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2007: Small sample size and data quality issues illustrated using tornado occurrence data. Electron. J. Severe Storms Meteor., 2 (5), https://ejssm.org/archives/wp-content/uploads/2021/09/vol2-5.pdf.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. W. Burgess, 1988: On some issues of United States tornado climatology. Mon. Wea. Rev., 116, 495501, https://doi.org/10.1175/1520-0493(1988)116<0495:OSIOUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. M. Schultz, 2006: On the use of indices and parameters in forecasting severe storms. Electron. J. Severe Storms Meteor., 1 (3), https://ejssm.org/archives/wp-content/uploads/2021/09/vol1-3.pdf.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, R. Edwards, R. L. Thompson, J. A. Hart, and K. C. Crosbie, 2006: A simple and flexible method for ranking severe weather events. Wea. Forecasting, 21, 939951, https://doi.org/10.1175/WAF959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554563, https://doi.org/10.1016/j.atmosres.2008.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, G. W. Carbin, and H. E. Brooks, 2012: The tornadoes of spring 2011 in the USA: An historical perspective. Weather, 67, 8894, https://doi.org/10.1002/wea.1902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., 2003: Rating tornado damage: An exercise in subjectivity. First Symp. on F-Scale and Severe-Weather Damage Assessment, Long Beach, CA, Amer. Meteor. Soc., P1.2, https://ams.confex.com/ams/pdfpapers/55307.pdf.

  • Edwards, R., 2012: Tropical cyclone tornadoes: A review of knowledge in research and prediction. Electron. J. Severe Storms Meteor., 7 (6), https://ejssm.org/archives/wp-content/uploads/2021/09/vol7-6.pdf.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., and H. E. Brooks, 2010: Possible impacts of the enhanced Fujita scale on United States tornado data. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P8.28, https://ams.confex.com/ams/pdfpapers/175398.pdf.

  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, https://doi.org/10.1175/BAMS-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., G. W. Carbin, and S. F. Corfidi, 2015: Overview of the Storm Prediction Center. 13th History Symp., Phoenix, AZ, Amer. Meteor. Soc., 1.1, https://ams.confex.com/ams/95Annual/webprogram/Manuscript/Paper266329/sympaper-v3.pdf.

  • Elsner, J. B., T. H. Jagger, and I. J. Elsner, 2014: Tornado intensity estimated from damage path dimensions. PLOS ONE, 9, e107571, https://doi.org/10.1371/journal.pone.0107571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., E. Ryan, and G. Strode, 2018: Structural property losses from tornadoes in Florida. Wea. Climate Soc., 10, 253258, https://doi.org/10.1175/WCAS-D-17-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., T. Fricker, and Z. Schroder, 2019: Increasingly powerful tornadoes in the United States. Geophys. Res. Lett., 46, 392398, https://doi.org/10.1029/2018GL080819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fricker, T., J. B. Elsner, and T. H. Jagger, 2017: Population and energy elasticity of tornado casualties. Geophys. Res. Lett., 44, 39413949, https://doi.org/10.1002/2017GL073093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. University of Chicago SMRP Research Paper 91, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1989: The Teton-Yellowstone tornado of 21 July 1987. Mon. Wea. Rev., 117, 19131940, https://doi.org/10.1175/1520-0493(1989)117<1913:TTYTOJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1992: Memoirs of an Effort to Unlock the Mystery of Severe Storms during the 50 Years, 1942–1992. University of Chicago Press, 298 pp.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1993: Plainfield tornado of August 28, 1990. The Tornado: Its Structure, Dynamics, Prediction, and Hazards. Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 1–17.

    • Crossref
    • Export Citation
  • Garner, J. M., W. C. Iwasko, T. D. Jewel, R. L. Thompson, and B. T. Smith, 2021: An environmental study on tornado pathlength, longevity, and width. Wea. Forecasting, 36, 14711490, https://doi.org/10.1175/WAF-D-20-0230.1.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and H. E. Brooks, 2018: Spatial trends in United States tornado frequency. npj Climate Atmos. Sci., 1, 38, https://doi.org/10.1038/S41612-018-0048-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazulis, T. P., 1993: Significant Tornadoes: 1680–1991: A Chronology and Analysis of Events. Environmental Films, 1340 pp.

  • Hales, J. E., Jr., 1988: Improving the watch/warning program through use of significant event data. Preprints, 15th Conf. on Severe Local Storms, Baltimore, MD, Amer. Meteor. Soc., 165–188.

  • LaDue, J. G., 2016: About the ASCE Tornado Wind Speed Estimation Standards Committee. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 6B.1, https://ams.confex.com/ams/28SLS/webprogram/Paper300684.html.

  • LaDue, J. G., and K. Ortega, 2008: Experiences in using the EF-scale since its inception. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 8B.6, https://ams.confex.com/ams/pdfpapers/142166.pdf.

  • LaDue, J. G., J. Wurman, M. Levitan, F. T. Lombardo, C. D. Karstens, J. Robinson, and W. Coulbourne, 2018: Advances in development of the ASCE/SEI/AMS standard for wind speed estimation in tornadoes and other windstorms. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 29, https://ams.confex.com/ams/29SLS/webprogram/Paper348726.html.

  • Long, J. A., and P. C. Stoy, 2014: Peak tornado activity is occurring earlier in the heart of “Tornado Alley.” Geophys. Res. Lett., 41, 62596264, https://doi.org/10.1002/2014GL061385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, J. A., P. C. Stoy, and T. Gerken, 2018: Tornado seasonality in the southeastern United States. Wea. Climate Extremes, 20, 8191, https://doi.org/10.1016/j.wace.2018.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M., M. Tippett, and U. Lall, 2015: Changes in the seasonality of tornado and favorable genesis conditions in the central United States. Geophys. Res. Lett., 42, 42244231, https://doi.org/10.1002/2015GL063968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, T. P., 2002: Tornado damage survey at Moore, Oklahoma. Wea. Forecasting, 17, 582598, https://doi.org/10.1175/1520-0434(2002)017<0582:TDSAMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J. R., 2001: T. Theodore Fujita: His contribution to tornado knowledge through damage documentation and the Fujita scale. Bull. Amer. Meteor. Soc., 82, 6372, https://doi.org/10.1175/1520-0477(2001)000<0063:TTFHCT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minor, J. E., J. R. McDonald, and K. C. Mehta, 1977: The tornado: An engineering-oriented perspective. NOAA Tech. Memo. ERL NSSL-82, 196 pp., NTIS PB-281860/AS.

  • Molthan, A. L., L. A. Schultz, K. M. McGrath, J. E. Burks, J. P. Camp, K. Angle, and G. J. Jedlovec, 2020: Incorporation and use of Earth remote sensing imagery within the NOAA/NWS damage assessment toolkit. Bull. Amer. Meteor. Soc., 101, E323–E340, https://doi.org/10.1175/BAMS-D-19-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., and R. Edwards, 1999: The SPC tornado/severe thunderstorm database. Preprints, 11th Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 215–220.

  • Shafer, C. M., and C. A. Doswell III, 2010: A multivariate index for ranking and classifying severe weather outbreaks. Electron. J. Severe Storms Meteor., 5 (1), https://ejssm.org/archives/wp-content/uploads/2021/09/vol5-1.pdf.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, A. R. Dean, and P. T. Marsh, 2015: Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Wea. Forecasting, 30, 914932, https://doi.org/10.1175/WAF-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, D. A. Speheger, A. R. Dean, C. D. Karstens, and A. K. Anderson-Frey, 2020a: WSR-88D tornado intensity estimates. Part I: Real-time probabilities of peak tornado wind speeds. Wea. Forecasting, 35, 24792492, https://doi.org/10.1175/WAF-D-20-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, D. A. Speheger, A. R. Dean, C. D. Karstens, and A. K. Anderson-Frey, 2020b: WSR-88D tornado intensity estimates. Part II: Real-time applications to tornado warning time scales. Wea. Forecasting, 35, 24932506, https://doi.org/10.1175/WAF-D-20-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speheger, D. A., C. A. Doswell III, and G. J. Stumpf, 2002: The tornadoes of 3 May 1999: Event verification in central Oklahoma and related issues. Wea. Forecasting, 17, 362381, https://doi.org/10.1175/1520-0434(2002)017<0362:TTOMEV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strader, S. M., W. S. Ashley, T. J. Pingel, and A. J. Krmenec, 2017: Projected 21st century changes in tornado exposure, risk, and disaster potential. Climatic Change, 141, 301313, https://doi.org/10.1007/s10584-017-1905-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thom, H. C. S., 1963: Tornado probabilities. Mon. Wea. Rev., 91, 730736, https://doi.org/10.1175/1520-0493(1963)091<0730:TP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and M. D. Vescio, 1998: The destruction potential index—A method for comparing tornado days. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 280–282.

  • Thorne, P. W., and R. S. Vose, 2010: Reanalysis suitable for characterizing long-term trends. Bull. Amer. Meteor. Soc., 91, 353361, https://doi.org/10.1175/2009BAMS2858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, https://doi.org/10.1175/WAF910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, M. R., K. Doe, A. Johnson, Z. Chen, J. Das, and R. S. Cerveny, 2019: Unpiloted aerial systems (UASs) application for tornado damage surveys: Benefits and procedures. Bull. Amer. Meteor. Soc., 100, 24052409, https://doi.org/10.1175/BAMS-D-19-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., and M. D. Vescio, 1998: Severe local storm climatology 1955–1996: Analysis of reporting trends and implications for NWS operations. Preprints, 18th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 536–539.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Wind Science and Engineering Center, 2006: A recommendation for an enhanced Fujita scale (EF-scale), revision 2. Texas Tech University Publ., 95 pp., http://www.depts.ttu.edu/nwi/pubs/fscale/efscale.pdf.

  • Wurman, J., and C. R. Alexander, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part II: Comparison of observed damage and radar-derived winds in the tornadoes. Mon. Wea. Rev., 133, 97119, https://doi.org/10.1175/MWR-2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 555 207 0
Full Text Views 267 177 43
PDF Downloads 292 175 34

Changes in Tornado Climatology Accompanying the Enhanced Fujita Scale

Roger EdwardsaStorm Prediction Center, National Weather Service, Norman, Oklahoma

Search for other papers by Roger Edwards in
Current site
Google Scholar
PubMed
Close
,
Harold E. BrooksbNational Severe Storms Laboratory and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Harold E. Brooks in
Current site
Google Scholar
PubMed
Close
, and
Hannah CohncIBM Weather Company, Dallas, Texas
dAmerican Airlines, Dallas, Texas

Search for other papers by Hannah Cohn in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

U.S. tornado records form the basis for a variety of meteorological, climatological, and disaster-risk analyses, but how reliable are they in light of changing standards for rating, as with the 2007 transition of Fujita (F) to enhanced Fujita (EF) damage scales? To what extent are recorded tornado metrics subject to such influences that may be nonmeteorological in nature? While addressing these questions with utmost thoroughness is too large of a task for any one study, and may not be possible given the many variables and uncertainties involved, some variables that are recorded in large samples are ripe for new examination. We assess basic tornado-path characteristics—damage rating, length, width, and occurrence time, as well as some combined and derived measures—for a 24-yr period of constant path-width recording standard that also coincides with National Weather Service modernization and the WSR-88D deployment era. The middle of that period (in both time and approximate tornado counts) crosses the official switch from F to EF. At least minor shifts in all assessed path variables are associated directly with that change, contrary to the intent of EF implementation. Major and essentially stepwise expansion of tornadic path widths occurred immediately upon EF usage, and widths have expanded still farther within the EF era. We also document lesser increases in pathlengths and in tornadoes rated at least EF1 in comparison with EF0. These apparently secular changes in the tornado data can impact research dependent on bulk tornado-path characteristics and damage-assessment results.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roger Edwards, roger.edwards@noaa.gov

Abstract

U.S. tornado records form the basis for a variety of meteorological, climatological, and disaster-risk analyses, but how reliable are they in light of changing standards for rating, as with the 2007 transition of Fujita (F) to enhanced Fujita (EF) damage scales? To what extent are recorded tornado metrics subject to such influences that may be nonmeteorological in nature? While addressing these questions with utmost thoroughness is too large of a task for any one study, and may not be possible given the many variables and uncertainties involved, some variables that are recorded in large samples are ripe for new examination. We assess basic tornado-path characteristics—damage rating, length, width, and occurrence time, as well as some combined and derived measures—for a 24-yr period of constant path-width recording standard that also coincides with National Weather Service modernization and the WSR-88D deployment era. The middle of that period (in both time and approximate tornado counts) crosses the official switch from F to EF. At least minor shifts in all assessed path variables are associated directly with that change, contrary to the intent of EF implementation. Major and essentially stepwise expansion of tornadic path widths occurred immediately upon EF usage, and widths have expanded still farther within the EF era. We also document lesser increases in pathlengths and in tornadoes rated at least EF1 in comparison with EF0. These apparently secular changes in the tornado data can impact research dependent on bulk tornado-path characteristics and damage-assessment results.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roger Edwards, roger.edwards@noaa.gov
Save