• Banks, R. F., J. Tiana-Alsina, J. M. Baldasno, F. Rocadenbosch, A. Papayannis, S. Solomos, and C. G. Tzanis, 2016: Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res., 176–177, 185201, https://doi.org/10.1016/j.atmosres.2016.02.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassett, R., X. Cai, L. Chapman, C. Heaviside, J. E. Thornes, C. L. Muller, and E. L. Warren, 2016: Observations of urban heat island advection from a high-density monitoring network. Quart. J. Roy. Meteor. Soc., 142, 24342441, https://doi.org/10.1002/qj.2836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassett, R., X. Cai, L. Chapman, C. Heaviside, and J. E. Thornes, 2017: The effects of heat advection on UK weather and climate observations in the vicinity of small urbanized areas. Bound.-Layer Meteor., 165, 181196, https://doi.org/10.1007/s10546-017-0263-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., O. Coceal, E. V. Goulart, A. C. Rudd, and A. G. Robins, 2015: Processes controlling atmospheric dispersion through city centers. J. Fluid Mech., 763, 5181, https://doi.org/10.1017/jfm.2014.661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteor., 114, 91109, https://doi.org/10.1007/s10546-004-4834-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhattacharya, R., S. Bordoni, K. Suselj, and J. Teixeira, 2018: Parameterization interactions in global aquaplanet simulations. J. Adv. Model. Earth Syst., 10, 403420, https://doi.org/10.1002/2017MS000991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., and S. D. Johnson, 1977: Urban-rural wind velocity differences. Atmos. Environ., 11, 597604, https://doi.org/10.1016/0004-6981(77)90112-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarre’re, 1989: Parameterization of orography induced turbulence in a mesobeta–scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brownlee, J., 2016: Evaluation of near-surface temperature and wind speed using the new single-layer urban canopy model in Houston. M.S. thesis, Department of Marine and Environmental Systems, Florida Institute of Technology, 137 pp.

  • Brownlee, J., P. Ray, M. Tewari, and H. Tan, 2017: Relative role of turbulent and radiative flux on the near-surface temperature in a single-layer urban canopy model over Houston. J. Appl. Meteor. Climatol., 56, 21732187, https://doi.org/10.1175/JAMC-D-17-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, M. T., and C. S. Bretherton, 2001: Convective momentum transport over the tropical Pacific: Budget estimates. J. Atmos. Sci., 58, 16731693, https://doi.org/10.1175/1520-0469(2001)058<1673:CMTOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., S. Miao, M. Tewari, J. W. Bao, and H. Kusaka, 2011: A numerical study of interaction between surface forcing and sea breeze circulation and their effects on stagnation in the greater Houston area. J. Geophys. Res., 116, D12105, https://doi.org/10.1029/2010JD015533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, F. Y., and D. W. Byun, 2008: Application of high-resolution land use and land cover data for atmospheric modeling in the Houston–Galveston metropolitan area, Part I: Meteorological simulation results. Atmos. Environ., 42, 77957811, https://doi.org/10.1016/j.atmosenv.2008.04.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, S. M. Michael, C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, https://doi.org/10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M., C. J. Correia, P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, https://doi.org/10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirks, R. A., 1974: Urban atmosphere: Warm dry envelope over St. Louis. J. Geophys. Res., 79, 34733475, https://doi.org/10.1029/JC079i024p03473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dupont, S., T. L. Otte, and J. K. S. Ching, 2004: Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model (MM5). Bound.-Layer Meteor., 113, 111158, https://doi.org/10.1023/B:BOUN.0000037327.19159.ac.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, H., and D. J. Sailor, 2005: Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: A comparison of implementations in two PBL schemes. Atmos. Environ., 39, 7384, https://doi.org/10.1016/j.atmosenv.2004.09.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Díez, M., J. Fernández, L. Fita, and C. Yagüe, 2013: Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Quart. J. Roy. Meteor. Soc., 139, 501514, https://doi.org/10.1002/qj.1976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunwani, P., and M. Mohan, 2017: Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India. Atmos. Res., 194, 4365, https://doi.org/10.1016/j.atmosres.2017.04.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haeger-Eugensson, M., and B. Holmer, 1999: Advection caused by the urban heat island circulation as a regulating factor on the nocturnal urban heat island. Int. J. Climatol., 19, 975988, https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<975::AID-JOC399>3.0.CO;2-J.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heaviside, C., X. M. Cai, and S. Vardoulakis, 2015: The effects of horizontal advection on the urban heat island in Birmingham and the West Midlands, United Kingdom during a heatwave. Quart. J. Roy. Meteor. Soc., 141, 14291441, https://doi.org/10.1002/qj.2452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., P. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos., 118, 10 49010 505, https://doi.org/10.1002/jgrd.50823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, M., Z. Q. Gao, S. G. Miao, and F. Chen, 2019: Sensitivity of urban boundary layer simulation to urban canopy models and PBL schemes in Beijing. Meteor. Atmos. Phys., 131, 12351248, https://doi.org/10.1007/s00703-018-0634-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: A step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. P. Montávez, E. García-Bustamante, J. Navarro, J. Vilà-Guerau De Arellano, and A. Muñoz-Roldán, 2013: An evaluation of WRF’s ability to reproduce the surface wind over complex terrain based on typical circulation patterns. J. Geophys. Res. Atmos., 118, 76517669, https://doi.org/10.1002/jgrd.50585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterizations: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolling, J. S., J. E. Pleim, H. E. Jeffries, and W. Vizuete, 2012: A multisensor evaluation of the asymmetric convective model, version 2, in southeast Texas. J. Air Waste Manage., 63, 4153, https://doi.org/10.1080/10962247.2012.732019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, https://doi.org/10.2151/jmsj.82.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multilayer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamraoui, F., J. F. Booth, C. M. Naud, M. P. Jensen, and K. L. Johnson, 2019: The interaction between boundary layer and convection schemes in a WRF simulation of post cold frontal clouds over the ARM East North Atlantic site. J. Geophys. Res. Atmos., 124, 46994721, https://doi.org/10.1029/2018JD029370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. H., and et al. , 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 21272143, https://doi.org/10.5194/acp-11-2127-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., and V. Masson, 2002: Simulation of a summer urban breeze over Paris. Bound.-Layer Meteor., 104, 463490, https://doi.org/10.1023/A:1016509614936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., M. Zhang, and B. Mapes, 2005: Zonal momentum budget of the Madden–Julian oscillation: The source and strength of equivalent linear damping. J. Atmos. Sci., 62, 21722188, https://doi.org/10.1175/JAS3471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. B., F. Chen, T. Warner, and J. Basara, 2006: Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. J. Appl. Meteor. Climatol., 45, 912929, https://doi.org/10.1175/JAM2383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowry, W. P., 1977: Empirical estimation of urban effects on climate: A problem analysis. J. Appl. Meteor., 16, 129135, https://doi.org/10.1175/1520-0450(1977)016<0129:EEOUEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittal, R., M. Tewari, C. Radhakrishnan, P. Ray, T. Singh, and A. Nickerson, 2019: Response of tropical cyclone Phailin (2013) in the Bay of Bengal to climate perturbations. Climate Dyn., 53, 20132030, https://doi.org/10.1007/s00382-019-04761-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., 2002: Evaluation and comparison of preliminary meteorological modeling for the August 2000 Houston–Galveston ozone episode. Texas Natural Resource Conservation Commission Rep., 83 pp, https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/158253/EvalComp_Preliminary_MM5_Modeling_2000Aug.pdf?sequence=1&isAllowed=y.

  • Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 10381060, https://doi.org/10.1175/2007JAMC1597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otte, T. L., A. Lacser, S. Dupont, and J. K. S. Ching, 2004: Implementation of an urban canopy parameterization in a mesoscale meteorological model. J. Appl. Meteor., 43, 16481665, https://doi.org/10.1175/JAM2164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P., and C. Zhang, 2010: A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528, https://doi.org/10.1175/2009JAS3059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P., C. Zhang, J. Dudhia, T. Li, and M. W. Moncrieff, 2012: Tropical channel model. Climate Models, L. M. Druyan, Ed., InTech, 3–18.

    • Crossref
    • Export Citation
  • Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteor. Climatol., 50, 11071128, https://doi.org/10.1175/2010JAMC2538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., Y. Zhang, M. Barlage, F. Chen, A. Mahalov, and S. Miao, 2018: Evaluation of the WRF-Urban modeling system coupled to Noah and Noah-MP land surface models over a semiarid urban environment. J. Geophys. Res. Atmos., 123, 23872408, https://doi.org/10.1002/2018JD028377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarmiento, D. P., K. J. Davis, A. Deng, T. Lauvaux, A. Brewer, and M. Hardesty, 2017: A comprehensive assessment of land surface-atmosphere interactions in a WRF/Urban modeling system for Indianapolis, IN. Elementa Sci. Anthropocene, 5, 23, https://doi.org/10.1525/elementa.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwitalla, T., O. Branch, and V. Wulfmeyer, 2020: Sensitivity study of the planetary boundary layer and microphysical schemes to the initialization of convection over the Arabian Peninsula. Quart. J. Roy. Meteor. Soc., 146, 846869, https://doi.org/10.1002/qj.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, A., H. J. S. Fernando, A. F. Hamlet, J. J. Hellmann, M. Barlagee, and F. Chen, 2016: Urban meteorological modeling using WRF: A sensitivity study. Int. J. Climatol., 37, 18851900, https://doi.org/10.1002/joc.4819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, S., T. Ohsawa, S. Chikaoka, and K. Kozai, 2011: Accuracy of the wind speed profile in the lower PBL as simulated by the WRF model. SOLA, 7, 109112, https://doi.org/10.2151/sola.2011-028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2011: Intercomparison of planetary boundary-layer parameterizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281, https://doi.org/10.1007/s10546-010-9583-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Szymanowski, M., 2005: Interactions between thermal advection in frontal zones and the urban heat island of Wrocław, Poland. Theor. Appl. Climatol., 82, 207224, https://doi.org/10.1007/s00704-005-0135-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taha, H., 1999: Modifying a mesoscale meteorological model to better incorporate urban heat storage: A bulk-parameterization approach. J. Appl. Meteor., 38, 466473, https://doi.org/10.1175/1520-0450(1999)038<0466:MAMMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taha, H., 2008a: Urban surface modification as a potential ozone air-quality improvement strategy in California: A mesoscale modeling study. Bound.-Layer Meteor., 127, 219239, https://doi.org/10.1007/s10546-007-9259-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taha, H., 2008b: Meso-urban meteorological and photochemical modeling of heat island mitigation. Atmos. Environ., 42, 87958809, https://doi.org/10.1016/j.atmosenv.2008.06.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taha, H., and R. Bornstein, 1999: Urbanization of meteorological models: Implications on simulated heat islands and air quality. Int. Congress of Biometeorology and Int. Conf. on Urban Climatology, Sydney, NSW, Australia, Macquarie University, http://www.met.sjsu.edu/faculty/bornstein.bak/urbanization/ICUC1_1_BOB-Taha.pdf.

  • Tan, H., P. Ray, M. Tewari, J. Brownlee, and R. S. Ajayamohan, 2019: Response of near-surface meteorological conditions to advection under the impact of green roof. Atmosphere, 10, 759, https://doi.org/10.3390/atmos10120759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and et al. , 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/pdfpapers/69061.pdf.

  • Wang, J., J. Mao, Y. Zhang, T. Cheng, Q. Yu, J. Tan, and W. Ma, 2019: Simulating the effects of urban parameterizations on the passage of a cold front during a pollution episode in megacity Shanghai. Atmosphere, 10, 79, https://doi.org/10.3390/atmos10020079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, K. K., and R. A. Dirks, 1978: Mesoscale perturbations on airflow in the urban mixing layer. J. Appl. Meteor., 17, 677688, https://doi.org/10.1175/1520-0450(1978)017<0677:MPOAIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, B., J. C. H. Fung, A. Chan, and A. Lau, 2012: Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J. Geophys. Res., 117, D12103, https://doi.org/10.1029/2011JD017080.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Z. H. Wang, F. Chen, S. Miao, M. Tewari, J. A. Voogt, and S. Myint, 2014: Enhancing hydrologic modelling in the coupled Weather Research and Forecasting–urban modelling system. Bound.-Layer Meteor., 155, 87109, https://doi.org/10.1007/s10546-014-9991-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. X. Shou, R. R. Dickerson, and F. Chen, 2011: Impact of upstream urbanization on the urban heat island effects along the Washington–Baltimore corridor. J. Appl. Meteor. Climatol., 50, 20122029, https://doi.org/10.1175/JAMC-D-10-05008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 133 133 13
Full Text Views 33 33 1
PDF Downloads 43 43 2

Role of Advection on the Evolution of Near-Surface Temperature and Wind in Urban-Aware Simulations

View More View Less
  • 1 Meteorology Program, Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, Florida
  • | 2 IBM T. J. Watson Research Center, Yorktown Heights, New York
  • | 3 Center for Prototype Climate Modeling, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
  • | 4 U.S. Naval Academy, Annapolis, Maryland
© Get Permissions
Restricted access

Abstract

The role of advection of heat and momentum on the evolution of near-surface temperature and wind is evaluated in urban-aware simulations over Houston, Texas, under dry conditions on a light-wind day. Two sets of experiments, each consisting of four simulations using different planetary boundary layer (PBL) schemes, were conducted over 48 h using the default urban scheme (BULK) and the single-layer urban canopy model (SLUCM) available within the Weather Research and Forecasting Model. We focus on understanding and quantifying the role played by temperature and momentum advection, particularly on the windward and leeward sides of the city. Previous studies have largely ignored any quantitative analysis of impacts from the advection of momentum over an urban area. The horizontal advection of temperature was found to be more important in the BULK because of the larger surface temperature gradient caused by warmer surface temperatures over urban areas than in the SLUCM. An analysis of the momentum budget shows that horizontal advection of zonal and meridional momentum plays a prominent role during the period of peak near-surface winds and that this effect is more pronounced in the windward side of the city. The local tendency in peak winds in the leeward side lags that in the windward side by about 1–2 h, similar to the lag found in horizontal momentum advection. The sensitivity of the results to different urban and PBL schemes was explored. The results imply that representation and influence of land-use patterns via sophisticated urban parameterizations generate locally driven winds that best resemble observations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pallav Ray, pallavkrray@gmail.com; pray@fit.edu

Abstract

The role of advection of heat and momentum on the evolution of near-surface temperature and wind is evaluated in urban-aware simulations over Houston, Texas, under dry conditions on a light-wind day. Two sets of experiments, each consisting of four simulations using different planetary boundary layer (PBL) schemes, were conducted over 48 h using the default urban scheme (BULK) and the single-layer urban canopy model (SLUCM) available within the Weather Research and Forecasting Model. We focus on understanding and quantifying the role played by temperature and momentum advection, particularly on the windward and leeward sides of the city. Previous studies have largely ignored any quantitative analysis of impacts from the advection of momentum over an urban area. The horizontal advection of temperature was found to be more important in the BULK because of the larger surface temperature gradient caused by warmer surface temperatures over urban areas than in the SLUCM. An analysis of the momentum budget shows that horizontal advection of zonal and meridional momentum plays a prominent role during the period of peak near-surface winds and that this effect is more pronounced in the windward side of the city. The local tendency in peak winds in the leeward side lags that in the windward side by about 1–2 h, similar to the lag found in horizontal momentum advection. The sensitivity of the results to different urban and PBL schemes was explored. The results imply that representation and influence of land-use patterns via sophisticated urban parameterizations generate locally driven winds that best resemble observations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pallav Ray, pallavkrray@gmail.com; pray@fit.edu
Save