• Allen, J. T., and E. R. Allen, 2016: A review of severe thunderstorms in Australia. Atmos. Res., 178–179, 347366, https://doi.org/10.1016/j.atmosres.2016.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, W. S. Ashley, M. R. Kumjian, and D. Cavanaugh, 2015: The characteristics of United States hail reports: 1955-2014. Electron. J. Severe Storms Meteor., 10 (3), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/149.

    • Search Google Scholar
    • Export Citation
  • Auer, A. H., and J. D. Marwitz, 1972: Hail in the vicinity of organized updrafts. J. Appl. Meteor., 11, 748752, https://doi.org/10.1175/1520-0450(1972)011<0748:HITVOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, https://doi.org/10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., D. R. Cheresnick, D. Mitchell, and B. G. Illston, 2007: An analysis of severe hail swaths in the southern plains of the United States. Trans. GIS, 11, 531554, https://doi.org/10.1111/j.1467-9671.2007.01059.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S., D. R. Deroche, J. M. Boustead, J. W. Leighton, B. L. Barjenbruch, and W. P. Gargan, 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6 (7), https://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/87.

    • Search Google Scholar
    • Export Citation
  • Brown, T. M., W. H. Pogorzelski, and I. M. Giammanco, 2015: Evaluating hail damage using property insurance claims data. Wea. Climate Soc., 7, 197210, https://doi.org/10.1175/WCAS-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1963: The growth of large hail within a steady updraught. Quart. J. Roy. Meteor. Soc., 89, 490506, https://doi.org/10.1002/qj.49708938206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1968: Effect of sampling density on areal extent of damaging hail. J. Appl. Meteor., 7, 518521, https://doi.org/10.1175/1520-0450(1968)007<0518:EOSDOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1970: Hailstreaks. J. Atmos. Sci., 27, 109125, https://doi.org/10.1175/1520-0469(1970)027<0109:H>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collis, S., A. Protat, P. T. May, and C. Williams, 2013: Statistics of storm updraft velocities from TWP-ICE including verification with profiling measurements. J. Appl. Meteor. Climatol., 52, 19091922, https://doi.org/10.1175/JAMC-D-12-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, J. W., and D. S. Zrnić, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121, 25112528, https://doi.org/10.1175/1520-0493(1993)121<2511:ASOEPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, https://doi.org/10.1175/JAS-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depue, T. K., P. C. Kennedy, and S. A. Rutledge, 2007: Performance of the hail differential reflectivity (HDR) polarimetric radar hail indicator. J. Appl. Meteor. Climatol., 46, 12901301, https://doi.org/10.1175/JAM2529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, https://doi.org/10.1175/2009JTECHA1208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52, 21622186, https://doi.org/10.1175/JAMC-D-12-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., R. Davies-Jones, and D. L. Keller, 1990: On summary measures of skill in rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576585, https://doi.org/10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraile, R., J. L. Sánchez, J. L. de la Madrid, A. Castro, and J. L. Marcos, 1999: Some results from the hailpad network in León (Spain): Noteworthy correlations among hailfall parameters. Theor. Appl. Climatol., 64, 105117, https://doi.org/10.1007/s007040050115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, S.-Y. Lee, A. Shapiro, Q. Xu, and K. Droegemeier, 2006: A three-dimensional variational single-Doppler velocity retrieval method with simple conservation equation constraint. Meteor. Atmos. Phys., 94, 1126, https://doi.org/10.1007/s00703-005-0170-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, D. R., and R. A. Clark, 1972: Vertically integrated liquid water—A new analysis tool. Mon. Wea. Rev., 100, 548552, https://doi.org/10.1175/1520-0493(1972)100<0548:VILWNA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidke, P., 1926: Berechnung des Erfolges und der Güte der Windstärkevorhersagen im Sturmwarnungsdienst. Geogr. Ann., 8, 301349, https://doi.org/10.1080/20014422.1926.11881138.

    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python Arm Radar Toolkit (Py-ART), a library for working with weather radar data in the python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohl, R., H.-H. Schiesser, and D. Aller, 2002: Hailfall: The relationship between radar-derived hail kinetic energy and hail damage to buildings. Atmos. Res., 63, 177207, https://doi.org/10.1016/S0169-8095(02)00059-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Insurance Council of Australia, 2017: ICA catastrophe database. Insurance Council of Australia, accessed 4 April 2020, https://www.icadataglobe.com/dataglobeposts/accessicadata.

  • Jewell, R., and J. Brimelow, 2009: Evaluation of Alberta hail growth model using severe hail proximity soundings from the United States. Wea. Forecasting, 24, 15921609, https://doi.org/10.1175/2009WAF2222230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, H.-G., H. Lee, J. Lkhamjav, and J.-J. Baik, 2017: A hail climatology in South Korea. Atmos. Res., 188, 9099, https://doi.org/10.1016/j.atmosres.2016.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahraman, A., S. Tilev-Tanriover, M. Kadioglu, D. M. Schultz, and P. M. Markowski, 2016: Severe hail climatology of Turkey. Mon. Wea. Rev., 144, 337346, https://doi.org/10.1175/MWR-D-15-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, https://doi.org/10.1175/JAS-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci., 77, 27652791, https://doi.org/10.1175/JAS-D-20-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, M., and M. Puskeiler, 2010: High-resolution assessment of the hail hazard over complex terrain from radar and insurance data. Meteor. Z., 19, 427439, https://doi.org/10.1127/0941-2948/2010/0452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523537, https://doi.org/10.1175/2008JTECHA1153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., M. Miller, and T. Smith, 2013: Quality control of accumulated fields by applying spatial and temporal constraints. J. Atmos. Oceanic Technol., 30, 745758, https://doi.org/10.1175/JTECH-D-12-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, T. P., R. F. Herzog, S. J. Morrison, and S. R. Smith, 2002: Hail damage threshold sizes for common roofing materials. 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., P3.2, https://ams.confex.com/ams/pdfpapers/45858.pdf.

  • Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947970, https://doi.org/10.1175/JAMC-D-18-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nanni, S., P. Mezzasalma, and P. P. Alberoni, 2000: Detection of hail by means of polarimetric radar data and hailpads: Results from four storms. Meteor. Appl., 7, 121128, https://doi.org/10.1017/S135048270000147X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1987: The hybrid multicellular–supercellular storm—An efficient hail producer. Part II. General characteristics and implications for hail growth. J. Atmos. Sci., 44, 20602073, https://doi.org/10.1175/1520-0469(1987)044<2060:THMSEH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hailfall diagnosis. Electron. J. Severe Storms Meteor., 13 (1), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/163.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, https://doi.org/10.1175/2009BAMS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., 1978: Size sorting of hail in a three-dimensional updraft and implications for hail suppression. J. Appl. Meteor., 17, 763777, https://doi.org/10.1175/1520-0450(1978)017<0763:SSOHIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parackal, K. I., M. S. Mason, D. J. Henderson, D. J. Smith, and J. D. Ginger, 2015: Investigation of damage: Brisbane 27 November 2014 severe storm event. Research proceedings from the 2015 bushfire and natural hazards CRC and AFAC conference, M. Rumsewicz, Ed., Bushfire and Natural Hazards CRC, 240–248, https://www.bnhcrc.com.au/publications/researchproceedings2015.

  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and L. J. Wicker, 2012: Comparison between dual-Doppler and EnKF storm-scale wind analyses: Observing system simulation experiments with a supercell thunderstorm. Mon. Wea. Rev., 140, 39723991, https://doi.org/10.1175/MWR-D-12-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., and I. Zawadzki, 1999: A variational method for real-time retrieval of three-dimensional wind field from multiple-Doppler bistatic radar network data. J. Atmos. Oceanic Technol., 16, 432449, https://doi.org/10.1175/1520-0426(1999)016<0432:AVMFRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., and J. S. Soderholm, 2020: 27/11/2014 Brisbane HailTrack case study data. Australian Bureau of Meteorology, accessed 1 November 2020, https://doi.org/10.5281/zenodo.3600107.

    • Crossref
    • Export Citation
  • Rasmussen, R. M., and A. Heymsfield, 1987: Melting and shedding of graupel and hail. Part II: Sensitivity study. J. Atmos. Sci., 44, 27642782, https://doi.org/10.1175/1520-0469(1987)044<2764:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius > 500 μm. J. Atmos. Sci., 41, 381388, https://doi.org/10.1175/1520-0469(1984)041<0381:AWTATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, H., and R. Deslendes, 2007: The four large hail assessment techniques in severe thunderstorm warning operations in Australia. 33rd Conf. on Radar Meteorology, Cairns, QLD, Australia, Amer. Meteor. Soc., P5.19, https://ams.confex.com/ams/pdfpapers/123766.pdf.

  • Richter, H., J. Peter, and S. Collis, 2014: Analysis of a destructive wind storm on 16 November 2008 in Brisbane, Australia. Mon. Wea. Rev., 142, 30383060, https://doi.org/10.1175/MWR-D-13-00405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2019: Radar Polarimetry for Weather Observations. Springer, 486 pp.

    • Crossref
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013a: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013b: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sander, J., J. F. Eichner, E. Faust, and M. Steuer, 2013: Rising variability in thunderstorm-related U.S. losses as a reflection of changes in large-scale thunderstorm forcing. Wea. Climate Soc., 5, 317331, https://doi.org/10.1175/WCAS-D-12-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiesser, H. H., 1990: Hailfall: The relationship between radar measurements and crop damage. Atmos. Res., 25, 559582, https://doi.org/10.1016/0169-8095(90)90038-E.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, W., H. H. Schiesser, and A. Waldvogel, 1992: The kinetic energy of hailfalls. Part IV: Patterns of hailpad and radar data. J. Appl. Meteor., 31, 11651178, https://doi.org/10.1175/1520-0450(1992)031<1165:TKEOHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuster, S. S., R. J. Blong, and K. J. McAneney, 2006: Relationship between radar-derived hail kinetic energy and damage to insured buildings for severe hailstorms in eastern Australia. Atmos. Res., 81, 215235, https://doi.org/10.1016/j.atmosres.2005.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., and A. Waldvogel, 1989: On determinations of maximum hailstone sizes from hailpad observations. J. Appl. Meteor., 28, 7176, https://doi.org/10.1175/1520-0450(1989)028<0071:ODOMHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., Y. Jung, J. Brotzge, B. Putnam, and M. Xue, 2016: Prediction and ensemble forecast verification of hail in the supercell storms of 20 May 2013. Wea. Forecasting, 31, 811825, https://doi.org/10.1175/WAF-D-15-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soderholm, J. S., H. A. McGowan, H. Richter, K. Walsh, T. Wedd, and T. M. Weckwerth, 2017: Diurnal preconditioning of subtropical coastal convective storm environments. Mon. Wea. Rev., 145, 38393859, https://doi.org/10.1175/MWR-D-16-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., H. A. Ramsay, S. T. Siems, M. J. Manton, J. R. Peter, A. Protat, and A. Pillalamarri, 2019: Radar-based climatology of damaging hailstorms in Brisbane and Sydney, Australia. Quart. J. Roy. Meteor. Soc., 146, 505530, https://doi.org/10.1002/QJ.3693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, C., K. Ortega, and V. Lakshmanan, 2009: Evaluating multi-radar, multisensor hail diagnosis with high resolution hail reports. 25th Conf. on Interactive Information Processing Systems, Phoenix, AZ, Amer. Meteor. Soc., P2.9, https://ams.confex.com/ams/pdfpapers/146206.pdf.

  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. Zhang, and Y. Wang, 2008: Climatology of hail in China: 1961–2005. J. Appl. Meteor. Climatol., 47, 795804, https://doi.org/10.1175/2007JAMC1603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., P. S. Ray, and N. C. Knight, 1983: Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 17681791, https://doi.org/10.1175/1520-0469(1983)040<1768:HGIAOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 967 126 0
Full Text Views 585 346 63
PDF Downloads 598 299 40

HailTrack—Improving Radar-Based Hailfall Estimates by Modeling Hail Trajectories

View More View Less
  • 1 Atmospheric Observations Research Group, University of Queensland, Brisbane, Queensland, Australia
  • | 2 Radar Science and Nowcasting, Science and Innovation Group, Australian Bureau of Meteorology, Docklands, Victoria, Australia
  • | 3 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 4 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 5 School of Earth, Atmosphere and Environment, and Centre of Excellence for Climate Extremes, Monash University, Melbourne, Victoria, Australia
Restricted access

Abstract

A spatial mismatch between radar-based hail swaths and surface hail reports is commonly noted in meteorological literature. The discrepancy is partly due to hailstone advection and melting between detection aloft and observation at the ground. This study aims to mitigate this problem by introducing a model named HailTrack, which estimates hailfall at the surface using radar observations. The model operates by detecting, tracking, and collating hailstone trajectories using dual-polarized, dual-Doppler radar retrievals. Notable improvements in hailfall forecasts were observed through the use of HailTrack, and initializing the model with radar retrievals of hail differential reflectivity HDR was found to produce the most accurate hailfall estimates. The analysis of a case study in Brisbane, Australia, demonstrated that trajectory modeling significantly improved the correlation between hail swaths and hail-related insurance losses, increasing Heidke skill scores from 0.48 to 0.58. The accumulated kinetic energy of hailstone impacts also showed some skill in identifying areas that were exposed to particularly severe hailfall. Other unique impact estimates are presented, such as hailstone advection information and hailstone impact angle statistics. The potential to run the model in real time and produce short-term (10–15 min) nowcasts is also introduced. Model applications include improving radar-based hail climatologies, validating hail detection techniques and insurance claims data, and providing real-time hail impact maps to improve public awareness of hail risk.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jordan Brook, j.brook@uq.edu.au

Abstract

A spatial mismatch between radar-based hail swaths and surface hail reports is commonly noted in meteorological literature. The discrepancy is partly due to hailstone advection and melting between detection aloft and observation at the ground. This study aims to mitigate this problem by introducing a model named HailTrack, which estimates hailfall at the surface using radar observations. The model operates by detecting, tracking, and collating hailstone trajectories using dual-polarized, dual-Doppler radar retrievals. Notable improvements in hailfall forecasts were observed through the use of HailTrack, and initializing the model with radar retrievals of hail differential reflectivity HDR was found to produce the most accurate hailfall estimates. The analysis of a case study in Brisbane, Australia, demonstrated that trajectory modeling significantly improved the correlation between hail swaths and hail-related insurance losses, increasing Heidke skill scores from 0.48 to 0.58. The accumulated kinetic energy of hailstone impacts also showed some skill in identifying areas that were exposed to particularly severe hailfall. Other unique impact estimates are presented, such as hailstone advection information and hailstone impact angle statistics. The potential to run the model in real time and produce short-term (10–15 min) nowcasts is also introduced. Model applications include improving radar-based hail climatologies, validating hail detection techniques and insurance claims data, and providing real-time hail impact maps to improve public awareness of hail risk.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jordan Brook, j.brook@uq.edu.au
Save