• Beaufort, L., T. de Garidel-Thoron, A. C. Mix, and N. G. Pisias, 2001: ENSO-like forcing on oceanic primary production during the Late Pleistocene. Science, 293, 24402444, https://doi.org/10.1126/science.293.5539.2440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: Climate Assessment for 1999. Bull. Amer. Meteor. Soc., 81 (6), S1S50, https://doi.org/10.1175/1520-0477(2000)081<1328:CAF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brettschneider, B., 2008: Climatological hurricane landfall probability for the United States. J. Appl. Meteor. Climatol., 47, 704716, https://doi.org/10.1175/2007JAMC1711.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, https://doi.org/10.1175/JCLI3457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, https://doi.org/10.1175/JCLI4203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camp J., M. Roberts, C. MacLachlan, E. Wallace, L. Hermanson, and A. Brookshaw, 2015: Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 22062219, https://doi.org/10.1002/qj.2516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 1995: Prediction of annual tropical cyclone activity over the western North Pacific and the South China Sea. Int. J. Climatol., 15, 10111019, https://doi.org/10.1002/joc.3370150907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., J.-E. Shi, and C.-M. Lam, 1998: Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea. J. Climate, 13, 9971004, https://doi.org/10.1175/1520-0434(1998)013<0997:SFOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., J.-E. Shi, and K. S. Liu, 2001: Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific. Wea. Forecasting, 16, 491498, https://doi.org/10.1175/1520-0434(2001)016<0491:IITSFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., 2011: How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea? J. Climate, 24, 46954700, https://doi.org/10.1175/2011JCLI4140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and C. H. Sui, 2010: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer. J. Geophys. Res., 115, D14113, https://doi.org/10.1029/2009JD013389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., C. Fang, C. Zhang, and Y. Chen, 2004: Observing the coupling effect between warm pool and “rain pool” in the Pacific Ocean. Remote Sens. Environ., 91, 153159, https://doi.org/10.1016/j.rse.2004.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., P.-H. Tan, L. Wu, J.-S. Liu, and H.-S. Chen, 2017: Climatological analysis of passage-type tropical cyclones from the western North Pacific into the South China Sea. Terr. Atmos. Ocean Sci., 28, 327343, https://doi.org/10.3319/TAO.2016.10.04.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., Z. Zhong, and W. Lu, 2017: Association of the poleward shift of East Asian subtropical upper-level jet with frequent tropical cyclone activities over the western North Pacific in summer. J. Climate, 30, 55975603, https://doi.org/10.1175/JCLI-D-16-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., Z. Zhong, and W. Lu, 2018: Mechanism study of tropical cyclone impact on East Asian subtropical upper-level jet: A numerical case investigation. Asia-Pac. J. Atmos. Sci., 54, 575585, https://doi.org/10.1007/s13143-018-0087-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., Z. Zhong, Y. Hu, S. Zhong, W. Lu, and J. Jiang, 2019: Role of tropical cyclones over the western North Pacific in the East Asian summer monsoon system. Earth Planet. Phys., 3, 147156, https://doi.org/10.26464/epp2019018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., and B. Wang, 2020: Relationship between Antarctic Oscillation and the genesis activity of the yearly latest tropical cyclone in the western North Pacific. Int. J. Climatol., 40, 42284241, https://doi.org/10.1002/joc.6455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., C.-C. Wu, and E.-J. Cha, 2010: Change of tropical cyclone activity by Pacific–Japan teleconnection pattern in the western North Pacific. J. Geophys. Res., 115, D19114, https://doi.org/10.1029/2010JD013866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., B. J. Kim, and J. H. Lee, 2013: Relationship between rainfall in Korea and Antarctic Oscillation in June. J. Korean Earth Sci. Soc., 2, 136147, https://doi.org/10.5467/JKESS.2013.34.2.136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y., K.-J. Ha, C.-H. Ho, and C. E. Chung, 2015: Interdecadal change in typhoon genesis condition over the western North Pacific. Climate Dyn., 45, 32433255, https://doi.org/10.1007/s00382-015-2536-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcroix, T., C. Henin, V. Porte, and P. Arkin, 1996: Precipitation and sea-surface salinity in the tropical Pacific Ocean. Deep-Sea Res. I, 43, 11231141, https://doi.org/10.1016/0967-0637(96)00048-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delgado, S., C. W. Landsea, and H. Willoughby, 2018: Reanalysis of the 1954–63 Atlantic hurricane seasons. J. Climate, 31, 41774192, https://doi.org/10.1175/JCLI-D-15-0537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downs, A., and C. Q. Kieu, 2019: A look at the relationship between the large-scale tropospheric static stability and the tropical cyclone maximum intensity. J. Climate, 33, 959975, https://doi.org/10.1175/JCLI-D-19-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drews, C., 2007: Separating the ACE Hurricane Index into number, intensity, and duration. University of Colorado, Boulder, Department of Atmospheric and Oceanic Sciences, accessed 29 July 2020, https://acomstaff.acom.ucar.edu/drews/hurricane/SeparatingTheACE.html.

  • Du, Y., L. Yang, and S. P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322, https://doi.org/10.1175/2010JCLI3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., S. Solomon, D. Folini, S. Davis, and C. Cagnazzo, 2013: Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Climate, 26, 22882301, https://doi.org/10.1175/JCLI-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, K., 2007a: North Pacific sea ice cover, a predictor for the western North Pacific typhoon frequency. Sci. China, 50D, 12511257, https://doi.org/10.1007/s11430-007-0076-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, K., 2007b: New predictors and a new prediction model for the typhoon frequency over western North Pacific. Sci. China, 50D, 14171423, https://doi.org/10.1007/s11430-007-0105-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrara, M., F. Groff, Z. Moon, K. Keshavamurthy, S. M. Robeson, and C. Kieu, 2017: Large-scale control of the lower stratosphere on variability of tropical cyclone intensity. Geophys. Res. Lett., 44, 43134323, https://doi.org/10.1002/2017GL073327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goebbert, K. H., and L. M. Leslie, 2010: Interannual variability of northwest Australian tropical cyclones. J. Climate, 23, 45384555, https://doi.org/10.1175/2010JCLI3362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goh, A. Z.-C., and J. C. L. Chan, 2010: Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. Int. J. Climatol., 30, 827843, https://doi.org/10.1002/joc.1943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N., and T. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo Y.-P., and Tan Z.-M., 2018: Westward migration of tropical cyclone rapid-intensification over the northwestern Pacific during short duration El Niño. Nat. Commun., 9, 1570, https://doi.org/10.1038/s41467-018-03945-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghroosta, T., and W. R. Ismail, 2017: Typhoon activity and some important parameters in the South China Sea. Wea. Climate Extremes, 17, 2935, https://doi.org/10.1016/j.wace.2017.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C. H., J. J. Baik, J. H. Kim, D. Y. Gong, and C. H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 17671776, https://doi.org/10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C. H., J. H. Kim, H. S. Kim, C. H. Sui, and D. Y. Gong, 2005: Possible influence of the Antarctic Oscillation on tropical cyclone activity in the western North Pacific. J. Geophys. Res., 110, D19104, https://doi.org/10.1029/2005JD005766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D., J. Zhu, Y.-C. Zhang, and A.-N. Huang, 2014: The different configurations of the East Asian polar front jet and subtropical jet and the associated rainfall anomalies over eastern China in summer. J. Climate, 27, 82058220, https://doi.org/10.1175/JCLI-D-14-00067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, F., and S. Xu, 2010: Super typhoon activity over the western North Pacific and its relationship with ENSO. J. Ocean Univ. China, 9, 123128, https://doi.org/10.1007/s11802-010-0123-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, https://doi.org/10.1038/ngeo1008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamura, R., and T. Ogasawara, 2006: On the role of typhoons in generating P-J teleconnection patterns over the western North Pacific in late summer. SOLA, 2, 3740, https://doi.org/10.2151/sola.2006-010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., M.-I. Lee, P. J. Webster, D. Kim, and J. H. Yoo, 2013: A physical basis for the probabilistic prediction of the accumulated tropical cyclone kinetic energy in the western North Pacific. J. Climate, 26, 79817991, https://doi.org/10.1175/JCLI-D-12-00679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2014: Prediction of seasonal Atlantic basin accumulated cyclone energy from 1 July. Wea. Forecasting, 29, 115121, https://doi.org/10.1175/WAF-D-13-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., S. G. Bowen, R. Pielke, and M. Bell, 2018: Continental U.S. hurricane landfall frequency and associated damage: Observations and future risks. Bull. Amer. Meteor. Soc., 99, 13591376, https://doi.org/10.1175/BAMS-D-17-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., R. E. Tuleya, and Y. Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279, 10181021, https://doi.org/10.1126/science.279.5353.1018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and S. J. Camargo, 2009: Hurricane track variability and secular potential intensity trends. Climatic Change, 97, 329337, https://doi.org/10.1007/s10584-009-9748-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, H., Y. Kosaka, and S.-P. Xie, 2016: A 117-year long index of the Pacific–Japan pattern with application to interdecadal variability. Int. J. Climatol., 36, 15751589, https://doi.org/10.1002/joc.4441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff, 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452454, https://doi.org/10.1126/science.1128448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., G. A. Vecchi, L. Bengtsson, and T. R. Knutson, 2010: Impact of duration thresholds on Atlantic tropical cyclone counts. J. Climate, 23, 25082519, https://doi.org/10.1175/2009JCLI3034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T.-C., C. Y. Leung, M.-H. Kok, and H.-S. Chan, 2012: The long term variations of tropical cyclone activity in the South China Sea and the vicinity of Hong Kong. Trop. Cyclone Res. Rev., 1, 277292, https://doi.org/10.6057/2012TCRR02.01.

    • Search Google Scholar
    • Export Citation
  • Li, C., J.-T. Wang, S.-Z. Lin, and H.-R. Cho, 2005: The relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location (in Chinese). Chin. J. Atmos. Sci., 28, 641658, https://doi.org/10.3878/j.issn.1006-9895.2004.05.01.

    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2012: Changes in western Pacific tropical cyclones associated with the El Niño–Southern Oscillation cycle. J. Climate, 25, 58645878, https://doi.org/10.1175/JCLI-D-11-00430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 29042918, https://doi.org/10.1175/JCLI-D-12-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2014: Interdecadal change in South China Sea tropical cyclone frequency in association with zonal sea surface temperature gradient. J. Climate, 27, 54685480, https://doi.org/10.1175/JCLI-D-13-00744.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. Zhou, C.-P. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Atmos. Sci., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Search Google Scholar
    • Export Citation
  • Lin, Z., and R. Lu, 2005: Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer. Adv. Atmos. Sci., 22, 199211, https://doi.org/10.1007/BF02918509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., R.-B. Lu, and W. Zhou, 2010: Change in early-summer meridional teleconnection over the western North Pacific and East Asia around the late 1970s. Int. J. Climatol., 30, 21952204, https://doi.org/10.1002/joc.2038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, Z., G. Wang, and C. Wang, 2014: Out-of-phase relationship between tropical cyclones generated locally in the South China Sea and non-locally from the northwest Pacific Ocean. Climate Dyn., 45, 11291136, https://doi.org/10.1007/s00382-014-2362-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2003: Climatological characteristics and seasonal forecasting of tropical cyclones making landfall along the south China coast. Mon. Wea. Rev., 131, 16501662, https://doi.org/10.1175//2554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-M., C.-T. Lee, and B. Wang, 2013: Seasonal prediction of accumulated tropical cyclone kinetic energy around Taiwan and the sources of the predictability. Int. J. Climatol., 33, 28462854, https://doi.org/10.1002/joc.3634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-M., C.-T. Lee, and B. Wang, 2017: Predictability of late-season tropical cyclone accumulated kinetic energy around Taiwan 2 months ahead. Int. J. Climatol., 38, 19381952, https://doi.org/10.1002/joc.5307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., 2004: Associations among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Japan, 82, 155165, https://doi.org/10.2151/jmsj.82.155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and J. Picaut, 1990: El Niño-Southern Oscillation displacements of the western equatorial Pacific warm pool. Science, 250, 13851388, https://doi.org/10.1126/science.250.4986.1385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., T. Li, and P.-C. Hsu, 2014: Contributing factors to the recent high level of accumulated cyclone energy (ACE) and power dissipation index (PDI) in the North Atlantic. J. Climate, 27, 30233034, https://doi.org/10.1175/JCLI-D-13-00394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ng, E. K. W., and J. C. L. Chan, 2012: Interannual variations of tropical cyclone activity over the north Indian Ocean. Int. J. Climatol., 32, 819830, https://doi.org/10.1002/joc.2304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1989: Global features of the Pacific–Japan oscillation. Meteor. Atmos. Phys., 41, 512, https://doi.org/10.1007/BF01032585.

  • Phan-Van, T., L. Trinh-Tuan, H. Bui-Hoang, and C. Kieu, 2015: Seasonal forecasting of tropical cyclone activity in the coastal region of Vietnam using RegCM4.2. Climate Res., 62, 115129, https://doi.org/10.3354/cr01267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., Z. Zhong, Y. Ha, Y. Wang, and X. Wang, 2013: The dynamic and thermodynamic effects of relative and absolute sea surface temperature on tropical cyclone intensity. J. Meteor. Res., 27, 4049, https://doi.org/10.1007/s13351-013-0105-z.

    • Search Google Scholar
    • Export Citation
  • Tartaglione, C. A., S. R. Smith, and J. J. O’Brien, 2003: ENSO impact on hurricane landfall probabilities for the Caribbean. J. Climate, 16, 29252931, https://doi.org/10.1175/1520-0442(2003)016<2925:EIOHLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thanh, N. T., H. D. Cuong, N. X. Hien, and C. Kieu, 2019: Relationship between sea surface temperature and the maximum intensity of tropical cyclones affecting Vietnam’s coastline. Int. J. Climatol., 40, 25272538, https://doi.org/10.1002/joc.6348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2012: North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE): Statistical modeling and sensitivity to sea surface temperature changes. J. Climate, 25, 625637, https://doi.org/10.1175/JCLI-D-11-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2013: Multiseason lead forecast of the North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE). J. Climate, 26, 36313643, https://doi.org/10.1175/JCLI-D-12-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, T. R. Knutson, and J. A. Smith, 2011: Is the recorded increase in short duration North Atlantic tropical storms spurious? J. Geophys. Res., 116, D10114, https://doi.org/10.1029/2010JD015493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakabayashi, S., and R. Kawamura, 2004: Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. J. Meteor. Soc. Japan, 82, 15771588, https://doi.org/10.2151/jmsj.82.1577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., J. Su, Y. Ding, and D. Chen, 2007: Tropical cyclone genesis over the South China Sea. J. Mar. Syst., 68, 318326, https://doi.org/10.1016/j.jmarsys.2006.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. J., and K. Fan, 2007: Relationship between the Antarctic Oscillation in the western North Pacific typhoon frequency. Chin. Sci. Bull., 52, 561565, https://doi.org/10.1007/s11434-007-0040-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and Z. Guo, 2014: Modulation of tropical cyclogenesis over the South China Sea by ENSO Modoki during boreal summer. J. Ocean Univ. China, 13, 223235, https://doi.org/10.1007/s11802-014-2128-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., Q. Zhang, and W. Li, 2012: Diagnosis of the ENSO modulation of tropical cyclogenesis over the southern South China Sea using a genesis potential index. Acta Oceanol. Sin., 31, 5468, https://doi.org/10.1007/s13131-012-0236-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., R. Huang, and R. Wu, 2013: Interdecadal variability of tropical cyclone frequency over the South China Sea and its association with the Indian Ocean sea surface temperature. Geophys. Res. Lett., 40, 768771, https://doi.org/10.1002/grl.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Zhou, C. Li, and D. Wang, 2012: Effects of the East Asian summer monsoon on tropical cyclone genesis over the South China Sea on an interdecadal time scale. Adv. Atmos. Sci., 29, 249262, https://doi.org/10.1007/s00376-011-1080-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-R., 2013: Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific. Prog. Oceanogr., 110, 4958, https://doi.org/10.1016/j.pocean.2012.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., B. Wang, and Braun S. A. Braun, 2007: Implications of tropical cyclone power dissipation index. Int. J. Climatol., 6, 727731, https://doi.org/10.1002/joc.1573.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, and J. Hafner, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, K., and R. Kawamura, 2007: Dynamical link between typhoon activity and the P-J teleconnection pattern from early summer to autumn as revealed by the JRA-25 reanalysis. SOLA, 3, 6568, https://doi.org/10.2151/sola.2007-017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Y., Y. Qi, and W. Zhou, 2012: Variability of tropical cyclone occurrence date in the South China Sea and its relationship with SST warming. Dyn. Atmos. Oceans, 55–56, 4559, https://doi.org/10.1016/j.dynatmoce.2012.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Y., C. Li, and R. Lu, 2019: Meridional displacement of the East Asian upper-tropospheric westerly jet and its relationship with the East Asian summer rainfall in CMIP5 simulations. Adv. Atmos. Sci., 36, 12031216, https://doi.org/10.1007/s00376-019-9066-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., Y. Du, D. Wang, C. Wang, and X. Wang, 2015: Impact of intraseasonal oscillation on the tropical cyclone track in the South China Sea. Climate Dyn., 44, 15051519, https://doi.org/10.1007/s00382-014-2180-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeung, K. H., M. C. Wu, W. L. Chang, and Y. K. Leung, 2005: Long-term change in tropical cyclone activity in the western North Pacific. Scientific Assembly of International Association of Meteorology and Atmospheric Science, Beijing, China, IAMAS, http://www.weather.gov.hk/tc/publica/reprint/files/r601.pdf.

  • Ying, M., E.-J. Cha, and H. J. Kwon, 2011: Comparison of three western North Pacific tropical cyclone best track datasets in a seasonal context. J. Meteor. Soc. Japan, 89, 211224, https://doi.org/10.2151/jmsj.2011-303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., T. Li, Z. Tan, and Z. Zhu, 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865877, https://doi.org/10.1007/s00382-015-2618-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and P.-G. Chiu, 2012: Contrasting various metrics for measuring tropical cyclone activity. Terr. Atmos. Ocean. Sci., 23, 303316, https://doi.org/10.3319/TAO.2011.11.23.01(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., C. Chou, and P. G. Chiu, 2009: A revised accumulated cyclone energy index. Geophys. Res. Lett., 36, L14710, https://doi.org/10.1029/2009GL039254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., and Y. Wang, 2016: CFSv2-Based statistical prediction for seasonal accumulated cyclone energy (ACE) over the western North Pacific. J. Climate, 29, 525541, https://doi.org/10.1175/JCLI-D-15-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and X.-T. Lei, 2011a: Contributions of ENSO and east Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521, https://doi.org/10.1175/2010JCLI3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and C.-C. Wu, 2011b: Impact of SSTA in east Indian Ocean on the frequency of northwest Pacific tropical cyclones: A regional atmospheric model study. J. Climate, 24, 62276242, https://doi.org/10.1175/JCLI-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and M. Ying, 2012: Seasonal forecasts of tropical cyclone activity over the western North Pacific: A review. Trop. Cyclone Res. Rev., 1, 307324, https://doi.org/10.6057/2012TCRR03.07.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and M. Wen, 2013: The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. J. Climate, 26, 24082415, https://doi.org/10.1175/JCLI-D-12-00798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and L. Tao, 2014: Intensified impact of east Indian Ocean SST anomaly on tropical cyclone genesis frequency over the western North Pacific. J. Climate, 27, 87248739, https://doi.org/10.1175/JCLI-D-14-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., X. Kuang, W. Guo, and T. Zhou, 2006: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33, L11708, https://doi.org/10.1029/2006GL026377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. Wang, and X. Ren, 2008: Seasonal variation of the meridional wind in the temperate jet stream and its relationship to the Asian monsoon (in Chinese). J. Meteor. Res., 24, 446454.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., L. Wu, and W. Zhou, 2011: Interannual changes of tropical cyclone intensity in the western North Pacific. J. Meteor. Soc. Japan, 89, 243253, https://doi.org/10.2151/jmsj.2011-305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., L. Wu, and G. B. Raga, 2018: Inter-decadal change of the lagged inter-annual relationship between local sea surface temperature and tropical cyclone activity over the western North Pacific. Theor. Appl. Climatol., 134, 707720, https://doi.org/10.1007/s00704-018-2420-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Z., X. Tang, W. Lu, and Z. Chen, 2015: The relationship of summertime upper level jet over East Asia and the Pacific Japan teleconnection (in Chinese). J. Meteor. Sci., 35, 672683.

    • Search Google Scholar
    • Export Citation
  • Zhou, B. T., and X. Cui, 2011: Sea surface temperature east of Australia: A predictor of tropical cyclone frequency over the western North Pacific? Chin. Sci. Bull., 56, 196201, https://doi.org/10.1007/s11434-010-4157-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B. T., X. Cui, and P. Zhao, 2008: Relationship between the Asian Pacific oscillation and the tropical cyclone frequency in the western North Pacific. Sci. China, 51D, 380385, https://doi.org/10.1007/s11430-008-0014-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuki, Z. M., and A. R. Lupo, 2008: Interannual variability of tropical cyclone activity in the southern South China Sea. J. Geophys. Res., 113, D06106, https://doi.org/10.1029/2007JD009218.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 409 151 0
Full Text Views 123 84 9
PDF Downloads 118 77 6

Remote Control of Sea Surface Temperature on the Variability of Tropical Cyclone Activity Affecting Vietnam’s Coastline

View More View Less
  • 1 Vietnam Institute of Meteorology Hydrology and Climate Change, Hanoi, Vietnam
  • | 2 National Centre for Hydro-Meteorological Forecasting, Hanoi, Vietnam
  • | 3 Department of Earth and Atmospheric Sciences, Indiana University Bloomington, Bloomington, Indiana
Restricted access

Abstract

This study examines the teleconnection between sea surface temperature (SST) in different ocean regions and tropical cyclone (TC) activity affecting Vietnam’s coastal region. Using spatial correlation and principal component analyses, it is found that the variability of TCs affecting Vietnam during 1982–2018 is remotely connected with SST in the Indian Ocean, the southwestern Pacific Ocean, and the northern Philippine Sea. Among the three regions, SST in the northern Philippine Sea displays the most significant inverse relationship with TC activity in the South China Sea (SCS), with lower June–November TC accumulated energy (ACE) for warmer northern Philippine Sea SST. Further analyses of large-scale atmospheric circulations show that this teleconnection between the northern Philippine Sea SST and TC activity in the SCS is linked to the East Asian subtropical jet (EASJ). Principal component analyses of the 200-hPa zonal wind associated with EASJ capture indeed a strong relationship between the second principal component, which characterizes the EASJ intensity, and ACE. Specifically, higher EASJ intensity corresponding to colder northern Philippine Sea SST would enhance large-scale ascending motion and low-level cyclonic anomalies in the SCS, which are favorable for TC formation and result in an overall increased ACE. Examination of the correlation between this second principal component and the northern Philippine Sea SST confirms that this correlation is statistically significant at a 95% confidence level. In this regard, these results support the Pacific–Japan teleconnection between the northern Philippine Sea SST and TC activity in the SCS.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Trinh Hoang Duong, hoangduongktnn@gmail.com

Abstract

This study examines the teleconnection between sea surface temperature (SST) in different ocean regions and tropical cyclone (TC) activity affecting Vietnam’s coastal region. Using spatial correlation and principal component analyses, it is found that the variability of TCs affecting Vietnam during 1982–2018 is remotely connected with SST in the Indian Ocean, the southwestern Pacific Ocean, and the northern Philippine Sea. Among the three regions, SST in the northern Philippine Sea displays the most significant inverse relationship with TC activity in the South China Sea (SCS), with lower June–November TC accumulated energy (ACE) for warmer northern Philippine Sea SST. Further analyses of large-scale atmospheric circulations show that this teleconnection between the northern Philippine Sea SST and TC activity in the SCS is linked to the East Asian subtropical jet (EASJ). Principal component analyses of the 200-hPa zonal wind associated with EASJ capture indeed a strong relationship between the second principal component, which characterizes the EASJ intensity, and ACE. Specifically, higher EASJ intensity corresponding to colder northern Philippine Sea SST would enhance large-scale ascending motion and low-level cyclonic anomalies in the SCS, which are favorable for TC formation and result in an overall increased ACE. Examination of the correlation between this second principal component and the northern Philippine Sea SST confirms that this correlation is statistically significant at a 95% confidence level. In this regard, these results support the Pacific–Japan teleconnection between the northern Philippine Sea SST and TC activity in the SCS.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Trinh Hoang Duong, hoangduongktnn@gmail.com
Save