• Abadi, M., and et al. , 2016: TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv 1603.04467, http://arxiv.org/abs/1603.04467.

    • Search Google Scholar
    • Export Citation
  • Abel, S. J., R. J. Cotton, P. A. Barrett, and A. K. Vance, 2014: A comparison of ice water content measurement techniques on the FAAM BAe-146 aircraft. Atmos. Meas. Tech., 7, 30073022, https://doi.org/10.5194/amt-7-3007-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adhikari, A., and C. Liu, 2019: Geographical distribution of thundersnow events and their properties from GPM Ku-band radar. J. Geophys. Res. Atmos., 124, 20312048, https://doi.org/10.1029/2018JD028839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adhikari, A., C. Liu, and M. S. Kulie, 2018: Global distribution of snow precipitation features and their properties from 3 years of GPM observations. J. Climate, 31, 37313754, https://doi.org/10.1175/JCLI-D-17-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and A. Rodi, 1989: Laboratory and wind tunnel evaluations of the Rosemount icing detector. J. Atmos. Oceanic Technol., 6, 971979, https://doi.org/10.1175/1520-0426(1989)006<0971:LAWTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borque, P., K. J. Harnos, S. W. Nesbitt, and G. M. McFarquhar, 2019: Improved parameterization of ice particle size distributions using uncorrelated mass spectrum parameters: Results from GCPEx. J. Appl. Meteor. Climatol., 58, 16571676, https://doi.org/10.1175/JAMC-D-18-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, R. J., and J. G. Wieler, 1985: Radar determination of snowfall rate and accumulation. J. Climate Appl. Meteor., 24, 6873, https://doi.org/10.1175/1520-0450(1985)024<0068:RDOSRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., Y. Hong, S. Chen, J. J. Gourley, J. Zhang, and P. E. Kirstetter, 2014: Snowfall detectability of NASA’s CloudSat: The first cross-investigation of its 2C-snow-profile product and National Multi-Sensor Mosaic QPE (NMQ) snowfall data. Prog. Electromagn. Res., 148, 5561, https://doi.org/10.2528/PIER14030405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casella, D., G. Panegrossi, P. Sanò, A. C. Marra, S. Dietrich, B. T. Johnson, and M. S. Kulie, 2017: Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR. Atmos. Res., 197, 6475, https://doi.org/10.1016/j.atmosres.2017.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, R. J., and et al. , 2018: Evaluation of triple-frequency radar retrieval of snowfall properties using coincident airborne in situ observations during OLYMPEX. Geophys. Res. Lett., 45, 57525760, https://doi.org/10.1029/2018GL077997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, R. J., S. W. Nesbitt, and G. M. McFarquhar, 2020: Evaluation of the microphysical assumptions within GPM-DPR using ground-based observations of rain and snow. Atmosphere, 11, 619, https://doi.org/10.3390/atmos11060619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and et al. , 2016: Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System. J. Hydrol., 541, 862872, https://doi.org/10.1016/j.jhydrol.2016.07.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J., R. J. Hogan, R. M. Forbes, A. Bodas-Salcedo, and T. H. Stein, 2011: Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quart. J. Roy. Meteor. Soc., 137, 20642078, https://doi.org/10.1002/qj.882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J., A. J. Heymsfield, A. Protat, A. Bansemer, and R. J. Hogan, 2014: Normalized particle size distribution for remote sensing application. J. Geophys. Res. Atmos., 119, 42044227, https://doi.org/10.1002/2013JD020700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delene, D., K. Hibert, M. Poellot, and N. Brackin, 2019: The North Dakota Citation Research Aircraft Measurement Platform. SAE Tech. Paper 2019-01-1990, 13 pp., https://doi.org/10.4271/2019-01-1990.

    • Crossref
    • Export Citation
  • Ding, S., G. M. McFarquhar, S. W. Nesbitt, R. J. Chase, M. R. Poellot, and H. Wang, 2020: Dependence of mass–dimensional relationships on median mass diameter. Atmosphere, 11, 756, https://doi.org/10.3390/atmos11070756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, D., and P. Eriksson, 2018: An update on global atmospheric ice estimates from satellite observations and reanalyses. Atmos. Chem. Phys., 18, 11 20511 219, https://doi.org/10.5194/acp-18-11205-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durden, S. L., S. Tanelli, and O. O. Sy, 2019: Comparison of GPM DPR and airborne radar observations in OLYMPEX. IEEE Geosci. Remote Sens. Lett., 17, 17071711, https://doi.org/10.1109/LGRS.2019.2952287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eriksson, P., R. Ekelund, J. Mendrok, M. Brath, O. Lemke, and S. A. Buehler, 2018: A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths. Earth Syst. Sci. Data, 10, 13011326, https://doi.org/10.5194/essd-10-1301-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2015: Importance of snow to global precipitation. Geophys. Res. Lett., 42, 95129520, https://doi.org/10.1002/2015GL065497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finlon, J. A., G. M. McFarquhar, S. W. Nesbitt, R. M. Rauber, H. Morrison, W. Wu, and P. Zhang, 2019: A novel approach for characterizing the variability in mass–dimension relationships: Results from MC3E. Atmos. Chem. Phys., 19, 36213643, https://doi.org/10.5194/acp-19-3621-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., T. Endoh, T. Yamada, K. Tsuboki, Y. Tachibana, and G. Wakahama, 1990: Determination of a Z–R relationship for snowfall using a radar and high sensitivity snow gauges. J. Appl. Meteor., 29, 147152, https://doi.org/10.1175/1520-0450(1990)029<0147:DOARFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., L. Tiana, G. M. Heymsfield, A. Tokay, W. S. Olson, A. J. Heymsfield, and A. Bansemer, 2018: Nonparametric methodology to estimate precipitating ice from multiple-frequency radar reflectivity observations. J. Appl. Meteor. Climatol., 57, 26052622, https://doi.org/10.1175/JAMC-D-18-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., A. Bansemer, N. B. Wood, G. Liu, S. Tanelli, O. O. Sy, M. Poellot, and C. Liu, 2018: Toward improving ice water content and snow-rate retrievals from radars. Part II: Results from three wavelength radar–collocated in situ measurements and CloudSat–GPM–TRMM radar data. J. Appl. Meteor. Climatol., 57, 365389, https://doi.org/10.1175/JAMC-D-17-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., C. Schmitt, C.-C.-J. Chen, A. Bansemer, A. Gettelman, P. R. Field, and C. Liu, 2020: Contributions of the liquid and ice phases to global surface precipitation: Observations and global climate modeling. J. Atmos. Sci., 77, 26292648, https://doi.org/10.1175/JAS-D-19-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiley, M. J., M. S. Kulie, and R. Bennartz, 2011: Uncertainty analysis for CloudSat snowfall retrievals. J. Appl. Meteor. Climatol., 50, 399418, https://doi.org/10.1175/2010JAMC2505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and et al. , 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., and et al. , 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and et al. , 2018: GPM/DPR Level-2 Algorithm Theoretical Basis Document. NASA Doc., 127 pp., https://gpm.nasa.gov/sites/default/files/2019-05/ATBD_DPR_201811_with_Appendix3b.pdf.

  • Jackson, R. C., G. M. McFarquhar, J. Stith, M. Beals, R. A. Shaw, J. Jensen, J. Fugal, and A. Korolev, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 25672590, https://doi.org/10.1175/JTECH-D-13-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and et al. , 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bulletin Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J., J. A. Maslanik, and A. J. Schweiger, 1989: Classification of merged AVHRR and SMMR Arctic data with neural networks. Photogramm. Eng. Remote Sens., 55, 13311338.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., M. S. Kulie, and R. Bennartz, 2011: A triple-frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res., 116, D11203, https://doi.org/10.1029/2010JD015430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., J. W. Strapp, G. A. Isaac, and E. Emery, 2013: Improved airborne hot-wire measurements of ice water content in clouds. J. Atmos. Oceanic Technol., 30, 21212131, https://doi.org/10.1175/JTECH-D-13-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozu, T., T. Iguchi, T. Kubota, N. Yoshida, S. Seto, J. Kwiatkowski, and Y. N. Takayabu, 2009: Feasibility of raindrop size distribution parameter estimation with TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 5366, https://doi.org/10.2151/jmsj.87A.53.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and R. Bennartz, 2009: Utilizing spaceborne radars to retrieve dry snowfall. J. Appl. Meteor. Climatol., 48, 25642580, https://doi.org/10.1175/2009JAMC2193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and L. Milani, 2018: Seasonal variability of shallow cumuliform snowfall: A CloudSat perspective. Quart. J. Roy. Meteor. Soc., 144, 329343, https://doi.org/10.1002/qj.3222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., L. Milani, N. B. Wood, S. A. Tushaus, R. Bennartz, and T. S. L’Ecuyer, 2016: A shallow cumuliform snowfall census using spaceborne radar. J. Hydrometeor., 17, 12611279, https://doi.org/10.1175/JHM-D-15-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., L. Milani, N. B. Wood, and T. S. L’Ecuyer, 2020: Global snowfall detection and measurement. Satellite Precipitation Measurement, Springer, 699–716, https://doi.org/10.1007/978-3-030-35798-6_12.

    • Crossref
    • Export Citation
  • Kuo, K. S., and et al. , 2016: Full access the microwave radiative properties of falling snow derived from nonspherical ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. J. Appl. Meteor. Climatol., 55, 691708, https://doi.org/10.1175/JAMC-D-15-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langille, R. C., and R. S. Thain, 1951: Some quantitative measurements of three-centimeter radar echoes from falling snow. Can. J. Phys., 29, 482490, https://doi.org/10.1139/p51-052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., 2014: High-level interface to T-matrix scattering calculations: Architecture, capabilities and limitations. Opt. Express, 22, 1655, https://doi.org/10.1364/OE.22.001655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and D. Moisseev, 2015: What do triple-frequency radar signatures reveal about aggregate snowflakes? J. Geophys. Res. Atmos., 120, 229239, https://doi.org/10.1002/2014JD022072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and W. Szyrmer, 2015: Radar signatures of snowflake riming: A modeling study. Earth Space Sci., 2, 346358, https://doi.org/10.1002/2015EA000102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and et al. , 2018: Retrieval of snowflake microphysical properties from multifrequency radar observations. Atmos. Meas. Tech., 11, 54715488, https://doi.org/10.5194/amt-11-5471-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C. L., and A. J. Illingworth, 2000: Toward more accurate retrievals of ice water content from radar measurements of clouds. J. Appl. Meteor., 39, 11301146, https://doi.org/10.1175/1520-0450(2000)039<1130:TMAROI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113, D00A09, https://doi.org/10.1029/2007JD009766.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., Z. Jiang, K. Aydin, J. Verlinde, E. Clothiaux, and G. Botta, 2016: A polarimetric scattering database for non-spherical ice particles at microwave wavelengths. Atmos. Meas. Tech., 9, 51195134, https://doi.org/10.5194/amt-9-5119-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubin, D., and et al. , 2020: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment. Bull. Amer. Meteor. Soc., 101, E1069E1091, https://doi.org/10.1175/BAMS-D-18-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mas, J. F., and J. J. Flores, 2008: The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens., 29, 617663, https://doi.org/10.1080/01431160701352154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1992: Radar reflectivity in snowfall. IEEE Trans. Geosci. Remote Sens., 30, 454461, https://doi.org/10.1109/36.142923.

  • McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, https://doi.org/10.1175/MWR3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and et al. , 2017: Processing of ice cloud in situ data collected by bulk water, scattering, and imaging probes: Fundamentals, uncertainties, and efforts toward consistency. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0007.1.

    • Crossref
    • Export Citation
  • Milani, L., and et al. , 2018: CloudSat snowfall estimates over Antarctica and the Southern Ocean: An assessment of independent retrieval methodologies and multi-year snowfall analysis. Atmos. Res., 213, 121135, https://doi.org/10.1016/j.atmosres.2018.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309324, https://doi.org/10.1016/S0022-4073(98)00008-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norin, L., A. Devasthale, T. S. L’Ecuyer, N. B. Wood, and M. Smalley, 2015: Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden. Atmos. Meas. Tech., 8, 50095021, https://doi.org/10.5194/amt-8-5009-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliphant, T., 2007: Python for scientific computing. Comput. Sci. Eng., 9, 1020, https://doi.org/10.1109/MCSE.2007.58.

  • Ori, D., V. Schemann, M. Karrer, J. D. Neto, L. von Terzi, A. Seifert, and S. Kneifel, 2020: Evaluation of ice particle growth in ICON using statistics of multi-frequency Doppler cloud radar observations. Quart. J. Roy. Meteor. Soc., 146, 38303849, https://doi.org/10.1002/qj.3875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palerme, C., J. Kay, C. Genthon, T. L’Ecuyer, N. Wood, and C. Claud, 2014: How much snow falls on the Antarctic ice sheet? Cryosphere, 8, 15771587, https://doi.org/10.5194/tc-8-1577-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palerme, C., C. Genthon, C. Claud, J. E. Kay, N. B. Wood, and T. L’Ecuyer, 2017: Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dyn., 48, 225239, https://doi.org/10.1007/s00382-016-3071-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petäjä, T., and et al. , 2016: A field campaign to elucidate the impact of biogenic aerosols on clouds and climate. Bull. Amer. Meteor. Soc., 97, 19091928, https://doi.org/10.1175/BAMS-D-14-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., P.-E. Kirstetter, J. Wang, D. B. Wolff, and A. Tokay, 2020: The GPM Ground Validation program. Satellite Precipitation Measurement, Vol. 2, Springer, 471–502, https://doi.org/10.1007/978-3-030-35798-6_2.

    • Crossref
    • Export Citation
  • Pfitzenmaier, L., A. Battaglia, and P. Kollias, 2019: The impact of the radar-sampling volume on multiwavelength spaceborne radar measurements using airborne radar observations. Remote Sens., 11, 2263, https://doi.org/10.3390/rs11192263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2015: Microphysical properties of convectively generated fall streaks within the stratiform comma head region of continental winter cyclones. J. Atmos. Sci., 72, 24652483, https://doi.org/10.1175/JAS-D-14-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Vol. 2, Atmospheric, Oceanic and Planetary Physics, World Scientific, 256 pp.

    • Crossref
    • Export Citation
  • Sadowy, G., A. Berkun, W. Chun, E. Im, and S. Durden, 2003: Development of an advanced airborne precipitation radar. Microwave J., 46, 8498.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1987: Ice cloud content from radar reflectivity. J. Climate Appl. Meteor., 26, 10501053, https://doi.org/10.1175/1520-0450(1987)026<1050:ICCFRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekelsky, S. M., W. L. Ecklund, J. M. Firda, K. S. Gage, and R. E. McIntosh, 1999: Particle size estimation in ice-phase clouds using multifrequency radar reflectivity measurements at 95, 33, and 2.8 GHz. J. Appl. Meteor., 38, 528, https://doi.org/10.1175/1520-0450(1999)038<0005:PSEIIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and et al. , 2015: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For measurement’s sake, let it snow. Bull. Amer. Meteor. Soc., 96, 17191741, https://doi.org/10.1175/BAMS-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., M. Kulie, L. Milani, S. J. Munchak, N. B. Wood, and V. Levizzani, 2019: Satellite estimation of falling snow: A Global Precipitation Measurement (GPM) Core Observatory perspective. J. Appl. Meteor. Climatol., 58, 14291448, https://doi.org/10.1175/JAMC-D-18-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souverijns, N., and et al. , 2018: Evaluation of the CloudSat surface snowfall product over Antarctica using ground-based precipitation radars. Cryosphere, 12, 37753789, https://doi.org/10.5194/tc-12-3775-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, T. H., D. J. Parker, R. J. Hogan, C. E. Birch, C. E. Holloway, G. M. Lister, J. H. Marsham, and S. J. Woolnough, 2015: The representation of the West African monsoon vertical cloud structure in the Met Office Unified Model: An evaluation with CloudSat. Quart. J. Roy. Meteor. Soc., 141, 33123324, https://doi.org/10.1002/qj.2614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bulletin Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, and E. Im, 2006: Simultaneous measurements of ku- and ka-band sea surface cross sections by an airborne radar. IEEE Geosci. Remote Sens. Lett., 3, 359363, https://doi.org/10.1109/LGRS.2006.872929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoshima, K., H. Masunaga, and F. A. Furuzawa, 2015: Early evaluation of Ku- and Ka-band sensitivities for the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR). SOLA, 11, 1417, https://doi.org/10.2151/sola.2015-004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., and et al. , 2019: The microphysics of stratiform precipitation during OLYMPEX: Compatibility between triple-frequency radar and airborne in situ observations. J. Geophys. Res. Atmos., 124, 87648792, https://doi.org/10.1029/2018JD029858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Lerber, A., D. Moisseev, L. F. Bliven, W. Petersen, A. M. Harri, and V. Chandrasekar, 2017: Microphysical properties of snow and their link to Ze –S relations during BAECC 2014. J. Appl. Meteor. Climatol., 56, 15611582, https://doi.org/10.1175/JAMC-D-16-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., and T. S. L’Ecuyer, 2021: What millimeter-wavelength radar reflectivity reveals about snowfall: An information-centric analysis. Atmos. Meas. Tech., 14, 869888, https://doi.org/10.5194/amt-14-869-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, D. G. Vane, G. L. Stephens, and P. Partain, 2013: Level 2C snow profile process description and interface control document, version 0. NASA CloudSat Project Doc., 21 pp., http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf.

  • Xiao, R. V. Chandrasekar, and H. Liu, 1998: Development of a neural network based algorithm for radar snowfall estimation. IEEE Trans. Geosci. Remote Sens., 36, 716724, https://doi.org/10.1109/36.673664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y. L., 1995: Electromagnetic scattering by an aggregate of spheres. Appl. Opt., 34, 45734588, https://doi.org/10.1364/AO.34.004573.

  • Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 22342247, https://doi.org/10.1016/j.jqsrt.2011.01.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 417 417 36
Full Text Views 157 157 29
PDF Downloads 187 187 32

A Dual-Frequency Radar Retrieval of Two Parameters of the Snowfall Particle Size Distribution Using a Neural Network

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 Cooperative Institute of Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 3 School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

With the launch of the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-DPR) in 2014, renewed interest in retrievals of snowfall in the atmospheric column has occurred. The current operational GPM-DPR retrieval largely underestimates surface snowfall accumulation. Here, a neural network (NN) trained on data that are synthetically derived from state-of-the-art ice particle scattering models and measured in situ particle size distributions (PSDs) is used to retrieve two parameters of the PSD: liquid equivalent mass-weighted mean diameter Dml and the liquid equivalent normalized intercept parameter Nwl. Evaluations against a test dataset showed statistically significantly improved ice water content (IWC) retrievals relative to a standard power-law approach and an estimate of the current GPM-DPR algorithm. Furthermore, estimated median percent errors (MPE) on the test dataset were −0.7%, +2.6%, and +1% for Dml, Nwl, and IWC, respectively. An evaluation on three case studies with collocated radar observations and in situ microphysical data shows that the NN retrieval has MPE of −13%, +120%, and +10% for Dml, Nwl, and IWC, respectively. The NN retrieval applied directly to GPM-DPR data provides improved snowfall retrievals relative to the default algorithm, removing the default algorithm’s ray-to-ray instabilities and recreating the high-resolution radar retrieval results to within 15% MPE. Future work should aim to improve the retrieval by including PSD data collected in more diverse conditions and rimed particles. Furthermore, different desired outputs such as the PSD shape parameter and snowfall rate could be included in future iterations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Randy J. Chase, randychase@ou.edu

Chase’s current affiliations: School of Computer Science, and School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Abstract

With the launch of the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-DPR) in 2014, renewed interest in retrievals of snowfall in the atmospheric column has occurred. The current operational GPM-DPR retrieval largely underestimates surface snowfall accumulation. Here, a neural network (NN) trained on data that are synthetically derived from state-of-the-art ice particle scattering models and measured in situ particle size distributions (PSDs) is used to retrieve two parameters of the PSD: liquid equivalent mass-weighted mean diameter Dml and the liquid equivalent normalized intercept parameter Nwl. Evaluations against a test dataset showed statistically significantly improved ice water content (IWC) retrievals relative to a standard power-law approach and an estimate of the current GPM-DPR algorithm. Furthermore, estimated median percent errors (MPE) on the test dataset were −0.7%, +2.6%, and +1% for Dml, Nwl, and IWC, respectively. An evaluation on three case studies with collocated radar observations and in situ microphysical data shows that the NN retrieval has MPE of −13%, +120%, and +10% for Dml, Nwl, and IWC, respectively. The NN retrieval applied directly to GPM-DPR data provides improved snowfall retrievals relative to the default algorithm, removing the default algorithm’s ray-to-ray instabilities and recreating the high-resolution radar retrieval results to within 15% MPE. Future work should aim to improve the retrieval by including PSD data collected in more diverse conditions and rimed particles. Furthermore, different desired outputs such as the PSD shape parameter and snowfall rate could be included in future iterations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Randy J. Chase, randychase@ou.edu

Chase’s current affiliations: School of Computer Science, and School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Save