• Argentini, S., A. P. Viola, G. Mastrantonio, A. Maurizi, T. Georgiadis, and M. Nardino, 2003: Characteristics of the boundary layer at Ny-Ålesund in the Arctic during the ARTIST field experiment. Ann. Geophys., 46, 185196, https://doi.org/10.4401/ag-3414.

    • Search Google Scholar
    • Export Citation
  • Beine, H. J., S. Argentini, A. Maurizi, G. Mastrantonio, and A. Viola, 2001: The local wind field at Ny-Ålesund and the Zeppelin mountain at Svalbard. Meteor. Atmos. Phys., 78, 107113, https://doi.org/10.1007/s007030170009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., R. G. Graversen, and W. Hazeleger, 2011: Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat. Geosci., 4, 758761, https://doi.org/10.1038/ngeo1285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2009: Current GCMs’ unrealistic negative feedback in the Arctic. J. Climate, 22, 46824695, https://doi.org/10.1175/2009JCLI2885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., S. T. Stegall, and X. B. Zeng, 2015: A climatology of tropospheric humidity inversions in five reanalyses. Atmos. Res., 153, 165187, https://doi.org/10.1016/j.atmosres.2014.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, L., S. L. Song, G. P. Feng, Y. Zhang, and G. P. Gao, 2017: Assessment of the uncertainties in Arctic low-level temperature inversion characteristics in radio occultation observations. IEEE Trans. Geosci. Remote Sens., 55, 17931803, https://doi.org/10.1109/TGRS.2016.2633461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, L., S. R. Hudson, V. P. Walden, R. M. Graham, and M. A. Granskog, 2017: Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015). J. Geophys. Res. Atmos., 122, 72357259, https://doi.org/10.1002/2016JD026034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF Atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store, accessed 17 May 2020, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Cullather, R. I., and M. G. Bosilovich, 2011: The moisture budget of the polar atmosphere in MERRA. J. Climate, 24, 28612879, https://doi.org/10.1175/2010JCLI4090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764, https://doi.org/10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boer, G., and et al. , 2014: Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of reanalyses and global climate models. Atmos. Chem. Phys., 14, 427445, https://doi.org/10.5194/acp-14-427-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devasthale, A., U. Willén, K. G. Karlsson, and C. G. Jones, 2010: Quantifying the clear-sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles. Atmos. Chem. Phys., 10, 55655572, https://doi.org/10.5194/acp-10-5565-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devasthale, A., J. Sedlar, and M. Tjernström, 2011: Characteristics of water-vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS) and radiosondes. Atmos. Chem. Phys., 11, 98139823, https://doi.org/10.5194/acp-11-9813-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devasthale, A., J. Sedlar, B. H. Kahn, M. Tjernström, E. J. Fetzer, B. Tian, J. Teixeira, and T. S. Pagano, 2016: A decade of spaceborne observations of the Arctic atmosphere novel, insights from NASA’s AIRS Instrument. Bull. Amer. Meteor. Soc., 97, 21632176, https://doi.org/10.1175/BAMS-D-14-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganeshan, M., and D. L. Wu, 2015: An investigation of the Arctic inversion using COSMIC RO observations. J. Geophys. Res. Atmos., 120, 93389351, https://doi.org/10.1002/2015JD023058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., and et al. , 2017: A comparison of the two Arctic atmospheric winter states observed during N-ICE2015 and SHEBA. J. Geophys. Res. Atmos., 122, 57165737, https://doi.org/10.1002/2016JD025475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., and et al. , 2019: Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. J. Climate, 32, 41214143, https://doi.org/10.1175/JCLI-D-18-0643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granskog, M. A., P. Assmy, S. Gerland, G. Spreen, H. Steen, and L. H. Smedsrud, 2016: Arctic research on thin ice: Consequences of Arctic sea ice loss. Eos, Trans. Amer. Geophys. Union, 97, 2226, https://doi.org/10.1029/2016EO044097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Jakobson, E., T. Vihma, T. Palo, L. Jakobson, H. Keernik, and J. Jaagus, 2012: Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys. Res. Lett., 39, n/a, https://doi.org/10.1029/2012GL051591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., 1990: Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. Int. J. Climatol., 10, 537548, https://doi.org/10.1002/joc.3370100509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kayser, M., and et al. , 2017: Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015). J. Geophys. Res. Atmos., 122, 10 85510 872, https://doi.org/10.1002/2016JD026089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilpeläinen, T., T. Vihma, M. Manninen, A. Sjoblom, E. Jakobson, T. Palo, and M. Maturilli, 2012: Modelling the vertical structure of the atmospheric boundary layer over Arctic fjords in Svalbard. Quart. J. Roy. Meteor. Soc., 138, 18671883, https://doi.org/10.1002/qj.1914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. H., and J. R. Key, 2003: Detection and analysis of clear-sky, low-level atmospheric temperature inversions with MODIS. J. Atmos. Oceanic Technol., 20, 17271737, https://doi.org/10.1175/1520-0426(2003)020<1727:DAAOCL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. H., J. R. Key, A. Schweiger, and J. Francis, 2006: Characteristics of satellite-derived clear-sky atmospheric temperature inversion strength in the Arctic, 1980–96. J. Climate, 19, 49024913, https://doi.org/10.1175/JCLI3915.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lüpkes, C., T. Vihma, E. Jakobson, G. König-Langlo, and A. Tetzlaff, 2010: Meteorological observations from ship cruises during summer to the central Arctic: A comparison with reanalysis data. Geophys. Res. Lett., 37, L09810, https://doi.org/10.1029/2010GL042724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medeiros, B., C. Deser, R. A. Tomas, and J. E. Kay, 2011: Arctic inversion strength in climate models. J. Climate, 24, 47334740, https://doi.org/10.1175/2011JCLI3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naakka, T., T. Nygård, and T. Vihma, 2018: Arctic humidity inversions: Climatology and processes. J. Climate, 31, 37653787, https://doi.org/10.1175/JCLI-D-17-0497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nygård, T., T. Valkonen, and T. Vihma, 2013: Antarctic low-tropospheric humidity inversions: 10-yr climatology. J. Climate, 26, 52055219, https://doi.org/10.1175/JCLI-D-12-00446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nygård, T., T. Valkonen, and T. Vihma, 2014: Characteristics of Arctic low-tropospheric humidity inversions based on radio soundings. Atmos. Chem. Phys., 14, 19591971, https://doi.org/10.5194/acp-14-1959-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onogi, K., and et al. , 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, https://doi.org/10.2151/jmsj.85.369.

  • Pavelsky, T. M., J. Boé, A. Hall, and E. J. Fetzer, 2011: Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Climate Dyn., 36, 945955, https://doi.org/10.1007/s00382-010-0756-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., C. W. Fairall, E. L. Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, https://doi.org/10.1029/2000JC000705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., B. Medeiros, and T. Mauritsen, 2014: Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Climate Dyn., 43, 289303, https://doi.org/10.1007/s00382-013-1964-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2011: Erroneous Arctic temperature trends in the ERA-40 reanalysis: A closer look. J. Climate, 24, 26202627, https://doi.org/10.1175/2010JCLI4054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlar, J., 2014: Implications of limited liquid water path on static mixing within Arctic low-level clouds. J. Appl. Meteor. Climatol., 53, 27752789, https://doi.org/10.1175/JAMC-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlar, J., M. D. Shupe, and M. Tjernström, 2012: On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. J. Climate, 25, 23742393, https://doi.org/10.1175/JCLI-D-11-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., R. C. Schnell, and J. D. Kahl, 1992: Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate, 5, 615629, https://doi.org/10.1175/1520-0442(1992)005<0615:LLTIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., R. G. Barry, and J. E. Walsh, 1995: Atmospheric water vapor characteristics at 70°N. J. Climate, 8, 719731, https://doi.org/10.1175/1520-0442(1995)008<0719:AWVCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, and J. Stroeve, 2012: Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. J. Geophys. Res., 117, D10104, https://doi.org/10.1029/2011JD017421.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, P. O. G. Persson, and H. Morrison, 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys., 11, 10 12710 148, https://doi.org/10.5194/acp-11-10127-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, O. Persson, H. Morrison, T. Yamaguchi, P. M. Caldwell, and G. de Boer, 2014: The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface-layer and cloud-top inversion-layer moisture sources. J. Atmos. Sci., 71, 574595, https://doi.org/10.1175/JAS-D-13-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sotiropoulou, G., and et al. , 2016: Atmospheric conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting open water and sea ice surfaces during melt and freeze-up seasons. J. Climate, 29, 87218744, https://doi.org/10.1175/JCLI-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M. and R. G. Graversen, 2009: The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 135, 431443, https://doi.org/10.1002/qj.380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and et al. , 2012: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos. Chem. Phys., 12, 68636889, https://doi.org/10.5194/acp-12-6863-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and et al. , 2014: The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design. Atmos. Chem. Phys., 14, 28232869, https://doi.org/10.5194/acp-14-2823-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., T. Kilpeläinen, M. Manninen, A. Sjöblom, E. Jakobson, T. Palo, J. Jaagus, and M. Maturilli, 2011: Characteristics of temperature and humidity inversions and low-level jets over Svalbard fjords in spring. Adv. Meteor., 2011, 114, https://doi.org/10.1155/2011/486807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wesslén, C., M. Tjernström, D. H. Bromwich, G. de Boer, A. M. L. Ekman, L. S. Bai, and S. H. Wang, 2014: The Arctic summer atmosphere: An evaluation of reanalyses using ASCOS data. Atmos. Chem. Phys., 14, 26052624, https://doi.org/10.5194/acp-14-2605-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., F. Q. Xie, and C. O. Ao, 2018: Evaluating the lower-tropospheric COSMIC GPS radio occultation sounding quality over the Arctic. Atmos. Meas. Tech., 11, 20512066, https://doi.org/10.5194/amt-11-2051-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L. J., Q. H. Yang, M. Y. Zhou, X. B. Zeng, D. H. Lenschow, X. Q. Wang, and B. Han, 2019: The intraseasonal and interannual variability of Arctic temperature and specific humidity inversions. Atmosphere, 10, 214, https://doi.org/10.3390/atmos10040214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. H., D. J. Seidel, J. C. Golaz, C. Deser, and R. A. Tomas, 2011: Climatological characteristics of Arctic and Antarctic surface-based inversions. J. Climate, 24, 51675186, https://doi.org/10.1175/2011JCLI4004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 251 251 136
Full Text Views 37 37 11
PDF Downloads 45 45 20

Assessment of Temperature and Specific Humidity Inversions and Their Relationships in Three Global Reanalysis Products over the Arctic Ocean

View More View Less
  • 1 College of Marine Sciences, Shanghai Ocean University, Shanghai, China
  • | 2 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
  • | 3 Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, China
  • | 4 College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
  • | 5 Shanghai Engineering Research Center of Estuarine and Oceanographic Mapping, Shanghai, China
  • | 6 Key Laboratory for Information Science of Electromagnetic Waves, Fudan University, Shanghai, China
  • | 7 Southern Marine Science and Engineering, Guangdong Laboratory (Zhuhai), Zhuhai, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Characteristics of temperature inversions (TIs) and specific humidity inversions (SHIs) and their relationships in three of the latest global reanalyses—the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I), the Japanese 55-year Reanalysis (JRA-55), and the ERA5—are assessed against in situ radiosonde (RS) measurements from two expeditions over the Arctic Ocean. All reanalyses tend to detect many fewer TI and SHI occurrences, together with much less common multiple TIs and SHIs per profile than are seen in the RS data in summer 2008, winter 2015, and spring 2015. The reanalyses generally depict well the relationships among TI characteristics seen in RS data, except for the TIs below 400 m in summer, as well as above 1000 m in summer and winter. The depth is simulated worst by the reanalyses among the SHI characteristics, which may result from its sensitivity to the uncertainties in specific humidity in the reanalyses. The strongest TI per profile in RS data exhibits more robust dependency on surface conditions than the strongest SHI per profile, and the former is better presented by the reanalyses than the latter. Furthermore, all reanalyses have difficulties simulating the relationships between TIs and SHIs, together with the correlations between the simultaneous inversions. The accuracy and vertical resolution in the reanalyses are both important to properly capture occurrence and characteristics of the Arctic inversions. In general, ERA5 performs better than ERA-I and JRA-55 in depicting the relationships among the TIs. However, the representation of SHIs is more challenging than TIs in all reanalyses over the Arctic Ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yang Zhang, yzhang@sio.org.cn

Abstract

Characteristics of temperature inversions (TIs) and specific humidity inversions (SHIs) and their relationships in three of the latest global reanalyses—the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I), the Japanese 55-year Reanalysis (JRA-55), and the ERA5—are assessed against in situ radiosonde (RS) measurements from two expeditions over the Arctic Ocean. All reanalyses tend to detect many fewer TI and SHI occurrences, together with much less common multiple TIs and SHIs per profile than are seen in the RS data in summer 2008, winter 2015, and spring 2015. The reanalyses generally depict well the relationships among TI characteristics seen in RS data, except for the TIs below 400 m in summer, as well as above 1000 m in summer and winter. The depth is simulated worst by the reanalyses among the SHI characteristics, which may result from its sensitivity to the uncertainties in specific humidity in the reanalyses. The strongest TI per profile in RS data exhibits more robust dependency on surface conditions than the strongest SHI per profile, and the former is better presented by the reanalyses than the latter. Furthermore, all reanalyses have difficulties simulating the relationships between TIs and SHIs, together with the correlations between the simultaneous inversions. The accuracy and vertical resolution in the reanalyses are both important to properly capture occurrence and characteristics of the Arctic inversions. In general, ERA5 performs better than ERA-I and JRA-55 in depicting the relationships among the TIs. However, the representation of SHIs is more challenging than TIs in all reanalyses over the Arctic Ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yang Zhang, yzhang@sio.org.cn
Save