An Adaptive Tracking Algorithm for Convection in Simulated and Remote Sensing Data

Bhupendra A. Raut Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, Maharashtra, India

Search for other papers by Bhupendra A. Raut in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5598-1393
,
Robert Jackson Environmental Science Division, Argonne National Laboratory, Argonne, Illinois

Search for other papers by Robert Jackson in
Current site
Google Scholar
PubMed
Close
,
Mark Picel Environmental Science Division, Argonne National Laboratory, Argonne, Illinois

Search for other papers by Mark Picel in
Current site
Google Scholar
PubMed
Close
,
Scott M. Collis Environmental Science Division, Argonne National Laboratory, Argonne, Illinois

Search for other papers by Scott M. Collis in
Current site
Google Scholar
PubMed
Close
,
Martin Bergemann ARC Centre of Excellence for Climate Extremes, School of Earth Science, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Martin Bergemann in
Current site
Google Scholar
PubMed
Close
, and
Christian Jakob ARC Centre of Excellence for Climate Extremes, School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia

Search for other papers by Christian Jakob in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A robust and computationally efficient object tracking algorithm is developed by incorporating various tracking techniques. Physical properties of the objects, such as brightness temperature or reflectivity, are not considered. Therefore, the algorithm is adaptable for tracking convection-like features in simulated data and remotely sensed two-dimensional images. In this algorithm, a first guess of the motion, estimated using the Fourier phase shift, is used to predict the candidates for matching. A disparity score is computed for each target–candidate pair. The disparity also incorporates overlapping criteria in the case of large objects. Then the Hungarian method is applied to identify the best pairs by minimizing the global disparity. The high-disparity pairs are unmatched, and their target and candidate are declared expired and newly initiated objects, respectively. They are tested for merger and split on the basis of their size and overlap with the other objects. The sensitivity of track duration is shown for different disparity and size thresholds. The paper highlights the algorithm’s ability to study convective life cycles using radar and simulated data over Darwin, Australia. The algorithm skillfully tracks individual convective cells (a few pixels in size) and large convective systems. The duration of tracks and cell size are found to be lognormally distributed over Darwin. The evolution of size and precipitation types of isolated convective cells is presented in the Lagrangian perspective. This algorithm is part of a vision for a modular platform [viz., TINT is not TITAN (TINT) and Tracking and Object-Based Analysis of Clouds (tobac)] that will evolve into a sustainable choice to analyze atmospheric features.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bhupendra Raut, bhupendra.raut@gmail.com

Abstract

A robust and computationally efficient object tracking algorithm is developed by incorporating various tracking techniques. Physical properties of the objects, such as brightness temperature or reflectivity, are not considered. Therefore, the algorithm is adaptable for tracking convection-like features in simulated data and remotely sensed two-dimensional images. In this algorithm, a first guess of the motion, estimated using the Fourier phase shift, is used to predict the candidates for matching. A disparity score is computed for each target–candidate pair. The disparity also incorporates overlapping criteria in the case of large objects. Then the Hungarian method is applied to identify the best pairs by minimizing the global disparity. The high-disparity pairs are unmatched, and their target and candidate are declared expired and newly initiated objects, respectively. They are tested for merger and split on the basis of their size and overlap with the other objects. The sensitivity of track duration is shown for different disparity and size thresholds. The paper highlights the algorithm’s ability to study convective life cycles using radar and simulated data over Darwin, Australia. The algorithm skillfully tracks individual convective cells (a few pixels in size) and large convective systems. The duration of tracks and cell size are found to be lognormally distributed over Darwin. The evolution of size and precipitation types of isolated convective cells is presented in the Lagrangian perspective. This algorithm is part of a vision for a modular platform [viz., TINT is not TITAN (TINT) and Tracking and Object-Based Analysis of Clouds (tobac)] that will evolve into a sustainable choice to analyze atmospheric features.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bhupendra Raut, bhupendra.raut@gmail.com
Save
  • Arnaud, Y., M. Desbois, and J. Maizi, 1992: Automatic tracking and characterization of African convective systems on Meteosat pictures. J. Appl. Meteor., 31, 443453, https://doi.org/10.1175/1520-0450(1992)031<0443:ATACOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biello, J., B. Khouider, and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187216, https://doi.org/10.4310/CMS.2010.v8.n1.a10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crane, R. K., 1979: Automatic cell detection and tracking. IEEE Trans. Geosci. Electron., 17, 250262, https://doi.org/10.1109/TGE.1979.294654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzgibbon, A., M. Pilu, and R. B. Fisher, 1999: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell., 21, 476480, https://doi.org/10.1109/34.765658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, R. C., and R. E. Woods, 1992: Digital Image Processing. 2nd ed. Prentice Hall, 716 pp.

  • Goswami, B., and G. Bhandari, 2013: Convective cloud detection and tracking from series of infrared images. J. Indian Soc., 291299, https://doi.org/10.1007/s12524-012-0234-3.

    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., and W. S. Ashley, 2018: A method for identifying midlatitude mesoscale convective systems in radar mosaics. Part II: Tracking. J. Appl. Meteor. Climatol., 57, 15991621, https://doi.org/10.1175/JAMC-D-17-0294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, L., S. Fu, L. Zhao, Y. Zheng, H. Wang, and Y. Lin, 2009: 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Oceanic Technol., 26, 719732, https://doi.org/10.1175/2008JTECHA1084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heikenfeld, M., P. J. Marinescu, M. Christensen, D. Watson-Parris, F. Senf, S. C. van den Heever, and P. Stier, 2019: tobac 1.2: Towards a flexible framework for tracking and analysis of clouds in diverse datasets. Geosci. Model Dev., 12, 45514570, https://doi.org/10.5194/gmd-12-4551-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., and A. Seifert, 2013: Automated tracking of shallow cumulus clouds in large domain, long duration large eddy simulations. Geosci. Model Dev., 6, 12611273, https://doi.org/10.5194/gmd-6-1261-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hornik, K., 2005: A clue for cluster ensembles. J. Stat. Software, 14 (12), 125, https://doi.org/10.18637/jss.v014.i12.

  • Houze, R. A., 2014: Cloud Dynamics. Academic Press, 432 pp.

  • Hu, J., and Coauthors, 2019: Tracking and characterization of convective cells through their maturation into stratiform storm elements using polarimetric radar and lightning detection. Atmos. Res., 226, 192207, https://doi.org/10.1016/j.atmosres.2019.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., W. R. Cotton, and R. L. McAnelly, 2003: Satellite and radar survey of mesoscale convective system development. Mon. Wea. Rev., 131, 24282449, https://doi.org/10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J., P. L. MacKeen, A. Witt, E. D. W. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276, https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, S.-H., and G. Lee, 2015: Radar-based cell tracking with fuzzy logic approach. Meteor. Appl., 22, 716730, https://doi.org/10.1002/met.1509.

  • Kishtawal, C., S. Deb, P. Pal, and P. Joshi, 2009: Estimation of atmospheric motion vectors from Kalpana-1 imagers. J. Appl. Meteor. Climatol., 48, 24102421, https://doi.org/10.1175/2009JAMC2159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhn, H. W., 1955: The Hungarian method for the assignment problem. Nav. Res. Logist., 2, 8397, https://doi.org/10.1002/nav.3800020109.

  • Kumar, V. V., A. Protat, C. Jakob, and P. T. May, 2014: On the atmospheric regulation of the growth of moderate to deep cumulonimbus in a tropical environment. J. Atmos. Sci., 71, 11051120, https://doi.org/10.1175/JAS-D-13-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyznarová, H., and P. Novák, 2009: CELLTRACK—Convective cell tracking algorithm and its use for deriving life cycle characteristics. Atmos. Res., 93, 317327, https://doi.org/10.1016/j.atmosres.2008.09.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2010: An objective method of evaluating and devising storm-tracking algorithms. Wea. Forecasting, 25, 701709, https://doi.org/10.1175/2009WAF2222330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., B. Herzog, and D. Kingfield, 2015: A method for extracting postevent storm tracks. J. Appl. Meteor. Climatol., 54, 451462, https://doi.org/10.1175/JAMC-D-14-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leese, J. A., C. S. Novak, and B. B. Clark, 1971: An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation. J. Appl. Meteor., 10, 118132, https://doi.org/10.1175/1520-0450(1971)010<0118:AATFOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpert, G., A. Houston, and N. Lock, 2015: The advanced algorithm for tracking objects (AALTO). Meteor. Appl., 22, 694704, https://doi.org/10.1002/met.1501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louf, V., C. Jakob, A. Protat, M. Bergemann, and S. Narsey, 2019a: The relationship of cloud number and size with their large-scale environment in deep tropical convection. Geophys. Res. Lett., 46, 92039212, https://doi.org/10.1029/2019GL083964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louf, V., A. Protat, R. A. Warren, S. M. Collis, D. B. Wolff, S. Raunyiar, C. Jakob, and W. A. Petersen, 2019b: An integrated approach to weather radar calibration and monitoring using ground clutter and satellite comparisons. J. Atmos. Oceanic Technol., 36, 1739, https://doi.org/10.1175/JTECH-D-18-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., and A. Ballinger, 2007: The statistical characteristics of convective cells in a monsoon regime (Darwin, northern Australia). Mon. Wea. Rev., 135, 8292, https://doi.org/10.1175/MWR3273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moseley, C., P. Berg, and J. O. Haerter, 2013: Probing the precipitation life cycle by iterative rain cell tracking. J. Geophys. Res. Atmos., 118, 13 36113 370, https://doi.org/10.1002/2013JD020868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, https://doi.org/10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Östlund, S. S., 1974: Computer software for rainfall analyses and echo tracking of digitized radar data. NOAA Tech. Memo. ERL WMPO-15, 82 pp., https://repository.library.noaa.gov/view/noaa/11233/.

  • Peter, J. R., M. J. Manton, R. J. Potts, P. T. May, S. M. Collis, and L. Wilson, 2015: Radar-derived statistics of convective storms in southeast Queensland. J. Appl. Meteor. Climatol., 54, 19852008, https://doi.org/10.1175/JAMC-D-13-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picel, M., S. Collis, B. Raut, S. Carani, R. Jackson, M. van Lier-Walqui, and A. Fridlind, 2018: TINT—TINT is not TITAN. Easy-to-use tracking code based on TITAN—Details and uses. Eighth Symp. on Advances in Modeling and Analysis Using Python, Austin, TX, Amer. Meteor. Soc., 3.4, https://ams.confex.com/ams/98Annual/webprogram/Paper335460.html.

  • Raut, B. A., R. N. Karekar, and D. M. Puranik, 2008: Wavelet-based technique to extract convective clouds from infrared satellite images. IEEE Geosci. Remote Sens. Lett., 5, 328330, https://doi.org/10.1109/LGRS.2008.916072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raut, B. A., V. Louf, K. Gayatri, P. Murugavel, M. Konwar, and T. Prabhakaran, 2020: A multiresolution technique for the classification of precipitation echoes in radar data. IEEE Trans. Geosci. Remote Sens., 58, 54095415, https://doi.org/10.1109/TGRS.2020.2965649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, D. B., 1979: An algorithm for tracking multiple targets. IEEE Trans. Automat. Contr., 24, 843854, https://doi.org/10.1109/TAC.1979.1102177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ristic, B., S. Arulampalam, and N. Gordon, 2003: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, 328 pp.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1987: Objective method for analysis and tracking of convective cells as seen by radar. J. Atmos. Oceanic Technol., 4, 422434, https://doi.org/10.1175/1520-0426(1987)004<0422:OMFAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossi, P. J., V. Chandrasekar, V. Hasu, and D. Moisseev, 2015: Kalman filtering–based probabilistic nowcasting of object-oriented tracked convective storms. J. Atmos. Oceanic Technol., 32, 461477, https://doi.org/10.1175/JTECH-D-14-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmetz, J., K. Holmlund, J. Hoffman, B. Strauss, B. Mason, V. Gaertner, A. Koch, and L. Van De Berg, 1993: Operational cloud-motion winds from Meteosat infrared images. J. Appl. Meteor., 32, 12061225, https://doi.org/10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, T. H., R. J. Hogan, P. A. Clark, C. E. Halliwell, K. E. Hanley, H. W. Lean, J. C. Nicol, and R. S. Plant, 2015: The DYMECS project: A statistical approach for the evaluation of convective storms in high-resolution NWP models. Bull. Amer. Meteor. Soc., 96, 939951, https://doi.org/10.1175/BAMS-D-13-00279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storlie, C. B., T. C. Lee, J. Hannig, and D. Nychka, 2009: Tracking of multiple merging and splitting targets: A statistical perspective. Stat. Sin., 19, 152.

    • Search Google Scholar
    • Export Citation
  • Welch, G., and E. Foxlin, 2002: Motion tracking: No silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl., 22, 2438, https://doi.org/10.1109/MCG.2002.1046626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westcott, N., 1984: A historical perspective on cloud mergers. Bull. Amer. Meteor. Soc., 65, 219226, https://doi.org/10.1175/1520-0477(1984)065<0219:AHPOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., L. Shao, F. Zheng, L. Wang, and Z. Song, 2011: Recent advances and trends in visual tracking: A review. Neurocomputing, 74, 38233831, https://doi.org/10.1016/j.neucom.2011.07.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zan, B., Y. Yu, J. Li, G. Zhao, T. Zhang, and J. Ge, 2019: Solving the storm split-merge problem—A combined storm identification, tracking algorithm. Atmos. Res., 218, 335346, https://doi.org/10.1016/j.atmosres.2018.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 452 0 0
Full Text Views 2215 982 49
PDF Downloads 1568 324 35