Aridity Changes and Related Climatic Drivers in the Drylands of China during 1960–2019

Jinqin Xu Guangdong Meteorological Public Service Center, Guangzhou, China
School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jinqin Xu in
Current site
Google Scholar
PubMed
Close
,
Yan Zeng Key Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing, China
Nanjing Joint Institute for Atmospheric Sciences, Nanjing, China

Search for other papers by Yan Zeng in
Current site
Google Scholar
PubMed
Close
,
Xinfa Qiu School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xinfa Qiu in
Current site
Google Scholar
PubMed
Close
,
Yongjian He School of Geographic Sciences, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yongjian He in
Current site
Google Scholar
PubMed
Close
,
Guoping Shi School of Geographic Sciences, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Guoping Shi in
Current site
Google Scholar
PubMed
Close
, and
Xiaochen Zhu School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky

Search for other papers by Xiaochen Zhu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Drylands cover about one-half of the land surface in China and are highly sensitive to climate change. Understanding climate change and its impact drivers on dryland is essential for supporting dryland planning and sustainable development. Using meteorological observations for 1960–2019, the aridity changes in drylands of China were evaluated using aridity index (AI), and the impact of various climatic factors [i.e., precipitation P; sunshine duration (SSD); relative humidity (RH); maximum temperature (Tmax); minimum temperature (Tmin); wind speed (WS)] on the aridity changes was decomposed and quantified. Results of trend analysis based on Sen’s slope estimator and Mann–Kendall test indicated that the aridity trends were very weak when averaged over the whole drylands in China during 1960–2019 but exhibited a significant wetting trend in hyperarid and arid regions of drylands. The AI was most sensitive to changes in water factors (i.e., P and RH), followed by SSD, Tmax, and WS, but the sensitivity of AI to Tmin was very small and negligible. Interestingly, the dominant climatic driver to AI change varied in the four dryland subtypes. The significantly increased P dominated the increase in AI in the hyperarid and arid regions. The significantly reduced WS and the significantly increased Tmax contributed more to AI changes than the P in the semiarid and dry subhumid regions of drylands. Previous studies emphasized the impact of precipitation and temperature on the global or regional dry–wet changes; however, the findings of this study suggest that, beyond precipitation and temperature, the impact of wind speed on aridity changes of drylands in China should be given equal attention.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinfa Qiu, xfqiu135@nuist.edu.cn

Abstract

Drylands cover about one-half of the land surface in China and are highly sensitive to climate change. Understanding climate change and its impact drivers on dryland is essential for supporting dryland planning and sustainable development. Using meteorological observations for 1960–2019, the aridity changes in drylands of China were evaluated using aridity index (AI), and the impact of various climatic factors [i.e., precipitation P; sunshine duration (SSD); relative humidity (RH); maximum temperature (Tmax); minimum temperature (Tmin); wind speed (WS)] on the aridity changes was decomposed and quantified. Results of trend analysis based on Sen’s slope estimator and Mann–Kendall test indicated that the aridity trends were very weak when averaged over the whole drylands in China during 1960–2019 but exhibited a significant wetting trend in hyperarid and arid regions of drylands. The AI was most sensitive to changes in water factors (i.e., P and RH), followed by SSD, Tmax, and WS, but the sensitivity of AI to Tmin was very small and negligible. Interestingly, the dominant climatic driver to AI change varied in the four dryland subtypes. The significantly increased P dominated the increase in AI in the hyperarid and arid regions. The significantly reduced WS and the significantly increased Tmax contributed more to AI changes than the P in the semiarid and dry subhumid regions of drylands. Previous studies emphasized the impact of precipitation and temperature on the global or regional dry–wet changes; however, the findings of this study suggest that, beyond precipitation and temperature, the impact of wind speed on aridity changes of drylands in China should be given equal attention.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinfa Qiu, xfqiu135@nuist.edu.cn
Save
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop requirements. FAO Irrigation and Drainage Paper 56, 300 pp., http://www.fao.org/3/X0490E/X0490E00.htm.

  • Andreoli, R. V., and M. T. Kayano, 2005: ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. Int. J. Climatol., 25, 20172030, https://doi.org/10.1002/joc.1222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armah, F. A., J. O. Odoi, G. T. Yengoh, S. Obiri, D. O. Yawson, and E. K. A. Afrifa, 2011: Food security and climate change in drought-sensitive savanna zones of Ghana. Mitig. Adapt. Strategies Global Change, 16, 291306, https://doi.org/10.1007/s11027-010-9263-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asadi Zarch, M. A., B. Sivakumar, and A. Sharma, 2015: Assessment of global aridity change. J. Hydrol., 520, 300313, https://doi.org/10.1016/j.jhydrol.2014.11.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bader, J., and M. Latif, 2003: The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys. Res. Lett., 30, 2169, https://doi.org/10.1029/2003GL018426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K., 1979: A sensitivity analysis of the Penman–Monteith actual evapotranspiration estimates. J. Hydrol., 44, 169190, https://doi.org/10.1016/0022-1694(79)90130-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. Zhao, 2017: Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Climatic Change, 144, 519533, https://doi.org/10.1007/s10584-016-1705-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. Dai, 2015: The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Climate Dyn., 45, 26672681, https://doi.org/10.1007/s00382-015-2500-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ElNesr, M., M. Abu-Zreig, and A. Alazba, 2010: Temperature trends and distribution in the Arabian Peninsula. Amer. J. Environ. Sci., 6, 191203, https://doi.org/10.3844/ajessp.2010.191.203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmos. Chem. Phys., 13, 10 08110 094, https://doi.org/10.5194/acp-13-10081-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., X. Li, L. Ruby Leung, D. Chen, and J. Xu, 2015: Aridity changes in the Tibetan Plateau in a warming climate. Environ. Res. Lett., 10, 034013, https://doi.org/10.1088/1748-9326/10/3/034013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gocic, M., and S. Trajkovic, 2013: Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet. Change, 100, 172182, https://doi.org/10.1016/j.gloplacha.2012.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, L., C.-Y. Xu, D. Chen, S. Halldin, and Y. D. Chen, 2006: Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol., 329, 620629, https://doi.org/10.1016/j.jhydrol.2006.03.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, X., J. Huang, R. Guo, H. Yu, P. Lin, and Y. Zhang, 2015: Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over East Asia. Atmos. Chem. Phys., 15, 13 77713 786, https://doi.org/10.5194/acp-15-13777-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Hurrell, J. Eischeid, and A. Phillips, 2006: Detection and attribution of twentieth-century northern and southern African rainfall change. J. Climate, 19, 39894008, https://doi.org/10.1175/JCLI3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., X. Guan, and F. Ji, 2012: Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys., 12, 53915398, https://doi.org/10.5194/acp-12-5391-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., T. Wang, W. Wang, Z. Li, and H. Yan, 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11 39811 416, https://doi.org/10.1002/2014JD021796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., M. Ji, Y. Xie, S. Wang, Y. He, and J. Ran, 2016a: Global semi-arid climate change over last 60 years. Climate Dyn., 46, 11311150, https://doi.org/10.1007/s00382-015-2636-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., H. Yu, X. Guan, G. Wang, and R. Guo, 2016b: Accelerated dryland expansion under climate change. Nat. Climate Change, 6, 166171, https://doi.org/10.1038/nclimate2837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and Coauthors, 2017a: Dryland climate change: Recent progress and challenges. Rev. Geophys., 55, 719778, https://doi.org/10.1002/2016RG000550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., Y. Xie, X. Guan, D. Li, and F. Ji, 2017b: The dynamics of the warming hiatus over the Northern Hemisphere. Climate Dyn., 48, 429446, https://doi.org/10.1007/s00382-016-3085-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., H. Yu, A. Dai, Y. Wei, and L. Kang, 2017c: Drylands face potential threat under 2°C global warming target. Nat. Climate Change, 7, 417422, https://doi.org/10.1038/nclimate3275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., J. Ma, X. Guan, Y. Li, and Y. He, 2019: Progress in semi-arid climate change studies in China. Adv. Atmos. Sci., 36, 922937, https://doi.org/10.1007/s00376-018-8200-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, M., 1996: Recent climatic change in the world’s drylands. Geophys. Res. Lett., 23, 6164, https://doi.org/10.1029/95GL03586.

  • Hulme, M., R. Marsh, and P. D. Jones, 1992: Global changes in a humidity index between 1931-60 and 1961-90. Climate Res., 2, 122, https://doi.org/10.3354/cr002001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hupet, F., and M. Vanclooster, 2001: Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration. J. Hydrol., 243, 192204, https://doi.org/10.1016/S0022-1694(00)00413-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, F., Z. Wu, J. Huang, and E. P. Chassignet, 2014: Evolution of land surface air temperature trend. Nat. Climate Change, 4, 462466, https://doi.org/10.1038/nclimate2223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, M., J. Huang, Y. Xie, and J. Liu, 2015: Comparison of dryland climate change in observations and CMIP5 simulations. Adv. Atmos. Sci., 32, 15651574, https://doi.org/10.1007/s00376-015-4267-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Griffin, 202 pp.

  • Koutroulis, A. G., 2019: Dryland changes under different levels of global warming. Sci. Total Environ., 655, 482511, https://doi.org/10.1016/j.scitotenv.2018.11.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000. Climate Dyn., 34, 501514, https://doi.org/10.1007/s00382-008-0482-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., J. Huang, M. Ji, and J. Ran, 2015: Dryland expansion in northern China from 1948 to 2008. Adv. Atmos. Sci., 32, 870876, https://doi.org/10.1007/s00376-014-4106-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Yu, K. Wang, and X. Ma, 2019: Comparison of the aridity index and its drivers in eight climatic regions in China in recent years and in future projections. Int. J. Climatol., 39, 52565272, https://doi.org/10.1002/joc.6137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lickley, M., and S. Solomon, 2018: Drivers, timing and some impacts of global aridity change. Environ. Res. Lett., 13, 104010, https://doi.org/10.1088/1748-9326/aae013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L., A. Gettelman, Q. Fu, and Y. Xu, 2018: Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Climatic Change, 146, 407422, https://doi.org/10.1007/s10584-016-1615-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., W. Huang, S. Feng, J. Chen, and A. Zhou, 2018: Spatiotemporal variations of aridity in China during 1961–2015: Decomposition and attribution. Sci. Bull., 63, 11871199, https://doi.org/10.1016/j.scib.2018.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., Y. Wang, N. You, Z. Liang, D. Qin, and S. Li, 2019: Changes in aridity and its driving factors in China during 1961–2016. Int. J. Climatol., 39, 5060, https://doi.org/10.1002/joc.5781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., D. Zhang, Y. Luo, and C. Liu, 2013: Spatial and temporal changes in aridity index in northwest China: 1960 to 2010. Theor. Appl. Climatol., 112, 307316, https://doi.org/10.1007/s00704-012-0734-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., 2009: The dynamics of the Indian Ocean sea surface temperature forcing of Sahel drought. Climate Dyn., 33, 445460, https://doi.org/10.1007/s00382-009-0596-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., and C. Fu, 2006: Some evidence of drying trend over northern China from 1951 to 2004. Chin. Sci. Bull., 51, 29132925, https://doi.org/10.1007/s11434-006-2159-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • McCuen, R. H., 1974: A sensitivity and error analysis CF procedures used for estimating evaporation. J. Amer. Water Resour. Assoc., 10, 486497, https://doi.org/10.1111/j.1752-1688.1974.tb00590.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleton, N. J., and D. S. G. Thomas, 1992: World Atlas of Desertification. United Nations Environment Programme, Edward Arnold, 69 pp.book

  • Mortimore, M., 2009: Dryland Opportunities: A New Paradigm for People, Ecosystems and Development. Global Drylands Imperative, 86 pp.

  • Mullan, A. B., 1995: On the linearity and stability of Southern Oscillation–climate relationships for New Zealand. Int. J. Climatol., 15, 13651386, https://doi.org/10.1002/joc.3370151205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and M. Wild, 2002: Climate change: Is the hydrological cycle accelerating? Science, 298, 13451346, https://doi.org/10.1126/science.1078972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, C. E., S. J. Jeong, C. H. Ho, H. Park, S. Piao, J. Kim, and S. Feng, 2017: Dominance of climate warming effects on recent drying trends over wet monsoon regions. Atmos. Chem. Phys., 17, 10 46710 476, https://doi.org/10.5194/acp-17-10467-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Partal, T., and E. Kahya, 2006: Trend analysis in Turkish precipitation data. Hydrol. Processes, 20, 20112026, https://doi.org/10.1002/hyp.5993.

  • Pour, S. H., A. K. A. Wahab, and S. Shahid, 2020: Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmos. Res., 233, 104704, https://doi.org/10.1016/j.atmosres.2019.104704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prăvălie, R., 2016: Drylands extent and environmental issues. A global approach. Earth-Sci. Rev., 161, 259278, https://doi.org/10.1016/j.earscirev.2016.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramarao, M. V. S., J. Sanjay, R. Krishnan, M. Mujumdar, A. Bazaz, and A. Revi, 2019: On observed aridity changes over the semiarid regions of India in a warming climate. Theor. Appl. Climatol., 136, 693702, https://doi.org/10.1007/s00704-018-2513-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S. C., K. K. Coe, J. P. Sparks, D. C. Housman, T. J. Zelikova, and J. Belnap, 2012: Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Climate Change, 2, 752755, https://doi.org/10.1038/nclimate1596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, J. F., and Coauthors, 2007: Global desertification: Building a science for dryland development. Science, 316, 847851, https://doi.org/10.1126/science.1131634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotenberg, E., and D. Yakir, 2010: Contribution of semi-arid forests to the climate system. Science, 327, 451454, https://doi.org/10.1126/science.1179998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safriel, U., 2009: Deserts and desertification: Challenges but also opportunities. Land Degrad. Dev., 20, 353366, https://doi.org/10.1002/ldr.935.

  • Schlaepfer, D. R., and Coauthors, 2017: Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun., 8, 14196, https://doi.org/10.1038/ncomms14196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, https://doi.org/10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., and Coauthors, 2016: Shift in potential evapotranspiration and its implications for dryness/wetness over southwest China. J. Geophys. Res. Atmos., 121, 93429355, https://doi.org/10.1002/2016JD025276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabari, H., and S. Marofi, 2011: Changes of Pan evaporation in the west of Iran. Water Resour. Manage., 25, 97111, https://doi.org/10.1007/s11269-010-9689-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., J. Huang, Y. He, and Y. Guan, 2014: Combined effects of the Pacific decadal oscillation and El Niño-Southern Oscillation on global land dry–wet changes. Sci. Rep., 4, 6651, https://doi.org/10.1038/SREP06651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., S. Wu, G. Chen, and E. Dai, 2010: Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theor. Appl. Climatol., 101, 1928, https://doi.org/10.1007/s00704-009-0197-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., D. Ma, and S. Wu, 2019: Enlargement of the semi-arid region in China from 1961 to 2010. Climate Dyn., 52, 509521, https://doi.org/10.1007/s00382-018-4139-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., Q. Zhang, P. Yue, L. Zhang, Q. Liu, S. Qiao, and P. Yan, 2016: Aridity over a semiarid zone in northern China and responses to the East Asian summer monsoon. J. Geophys. Res. Atmos., 121, 13 90113 918, https://doi.org/10.1002/2016JD025261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Pan, Z. Wang, S. Jiang, L. Liang, X. Wang, and X. Wang, 2019: What were the changing trends of the seasonal and annual aridity indexes in northwestern China during 1961–2015? Atmos. Res., 222, 154162, https://doi.org/10.1016/j.atmosres.2019.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., H. Zhang, S. Feng, and Q. Fu, 2015: Simulating direct effects of dust aerosol on arid and semi-arid regions using an aerosol-climate coupled system. Int. J. Climatol., 35, 18581866, https://doi.org/10.1002/joc.4093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., L. Chen, and Z. Ma, 2014: Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chin. Sci. Bull., 59, 412429, https://doi.org/10.1007/s11434-013-0003-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and H. Zhang, 2016: Impacts of SST warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over central Asia. Climate Dyn., 46, 32233238, https://doi.org/10.1007/s00382-015-2765-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 473 0 0
Full Text Views 3269 2568 214
PDF Downloads 708 163 17