• Ciesielski, P. E., and et al. , 2014a: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, https://doi.org/10.1175/JTECH-D-13-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, K. Yoneyama, and R. K. Taft, 2014b: Mitigation of Sri Lanka island effects in Colombo sounding data and its impact on DYNAMO analyses. J. Meteor. Soc. Japan, 92, 385405, https://doi.org/10.2151/jmsj.2014-407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, W. H. Schubert, and J. H. Ruppert Jr., 2018: Diurnal cycle of the ITCZ in DYNAMO. J. Climate, 31, 45434562, https://doi.org/10.1175/JCLI-D-17-0670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, E. L., 2012: The effects of a remote atoll and lagoon on the marine boundary layer. M.S. thesis, Dept. of Meteorology, Naval Postgraduate School, 56 pp.

  • Fine, C. M., R. H. Johnson, P. E. Ciesielski, and R. K. Taft, 2016: The role of topographically induced vortices in tropical cyclone formation over the Indian Ocean. Mon. Wea. Rev., 144, 48274847, https://doi.org/10.1175/MWR-D-16-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2017: Multiscale variability of the atmospheric boundary layer during DYNAMO. J. Atmos. Sci., 74, 40034021, https://doi.org/10.1175/JAS-D-17-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and J. A. Cotturone, 2001: Multiscale variability of the atmospheric mixed-layer over the western Pacific warm pool. J. Atmos. Sci., 58, 27292750, https://doi.org/10.1175/1520-0469(2001)058<2729:MVOTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert Jr., and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598622, https://doi.org/10.1175/JAS-D-14-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. N., and S. A. McFarlane, 2011: Quantification of the impact of Nauru Island on ARM measurements. J. Appl. Meteor. Climatol., 51, 628636, https://doi.org/10.1175/JAMC-D-11-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, 2007: Modification of the atmospheric boundary layer by a small island: Observations from Nauru. Mon. Wea. Rev., 135, 891905, https://doi.org/10.1175/MWR3319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., C. N. Long, and D. M. Flynn, 2005: Impact of island-induced clouds on surface measurements: Analysis of the ARM Nauru Island Effects Study data. J. Appl. Meteor., 44, 10451065, https://doi.org/10.1175/JAM2241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., and et al. , 2004: Diurnal land–sea rainfall peak migration over Sumatra Island, Indonesian maritime continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagarajan, B., and A. Aiyyer, 2004: Performance of the ECMWF operational analyses over the tropical Indian Ocean. Mon. Wea. Rev., 132, 22752282, https://doi.org/10.1175/1520-0493(2004)132<2275:POTEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., and D. W. Titley, 1994: Use of multiquadric interpolation for meteorological objective analysis. Mon. Wea. Rev., 122, 16111631, https://doi.org/10.1175/1520-0493(1994)122<1611:UOMIFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praveen Kumar, B., J. Vialard, M. Lengaigne, V. S. N. Murty, and M. J. McPhaden, 2012: TropFlux: Air-sea fluxes for the global tropical oceans—Description and evaluation. Climate Dyn., 38, 15211543, https://doi.org/10.1007/s00382-011-1115-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and V. Grubisic, 1993: Aerial observations of Hawaii’s wake. J. Atmos. Sci., 50, 37283750, https://doi.org/10.1175/1520-0469(1993)050<3728:AOOHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., and et al. , 2007: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953963, https://doi.org/10.1175/JTECH2019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2017: Factors controlling rain on small tropical islands: Diurnal cycle, large-scale wind speed, and topography. J. Atmos. Sci., 74, 35153532, https://doi.org/10.1175/JAS-D-16-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T., T. W. Horst, and J. W. Wilson, 1999: An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev., 127, 21602179, https://doi.org/10.1175/1520-0493(1999)127<2160:AOSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., M. Hanyu, F. Yoshiura, S. Sueyoshi, and M. Katsumata, 2002: Radiosonde observation from the ship in the tropical region. Japan Marine Science and Technology Center. Rep. 45, 31–39, http://www.jamstec.go.jp/dcop/e/publications/pdf/Yoneyama-etal_2002_JAMSTECR.pdf.

  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 197 197 12
Full Text Views 42 42 7
PDF Downloads 60 60 7

Small Island Effects in DYNAMO and Their Impact on Large-Scale Budget Analyses

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

During the Dynamics of the MJO (DYNAMO) field campaign, radiosonde launches were regularly conducted from three small islands/atolls (Malé and Gan, Maldives, and Diego Garcia, British Indian Ocean Territory) as part of a large-scale sounding network. Comparison of island upsondes with nearby and near-contemporaneous dropsondes over the ocean provides evidence for the magnitude and scope of the islands’ influence on the surrounding atmosphere and on the island upsonde profiles. The island’s impact on the upsonde data is most prominent in the lowest 200 m. Noting that the vertical gradients of temperature, moisture, and winds over the ocean are generally constant in the lowest 0.5 km of dropsondes, a simple procedure was constructed to adjust the upsonde profiles in the lowest few hundred meters to resemble the atmospheric structures over the open ocean. This procedure was applied to the soundings from the three islands mentioned above for the October–December 2011 period of DYNAMO. As a result of this procedure, the adjusted diurnal cycle amplitude of surface temperature is reduced fivefold, resembling that over the ocean, and low-level wind speeds are increased in ~90% of the island soundings. Examination of the impact of these sounding adjustments shows that dynamical and budget fields are primarily affected by adjustments to the wind field, whereas convective parameters are sensitive to the adjustments in thermodynamic fields. Although the impact of the adjustments is generally small (on the order of a few percent), intraseasonal wind regime changes result in some systematic variations in divergence and vertical motion over the sounding arrays.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Corresponding author: Paul E. Ciesielski, paulc@atmos.colostate.edu

Abstract

During the Dynamics of the MJO (DYNAMO) field campaign, radiosonde launches were regularly conducted from three small islands/atolls (Malé and Gan, Maldives, and Diego Garcia, British Indian Ocean Territory) as part of a large-scale sounding network. Comparison of island upsondes with nearby and near-contemporaneous dropsondes over the ocean provides evidence for the magnitude and scope of the islands’ influence on the surrounding atmosphere and on the island upsonde profiles. The island’s impact on the upsonde data is most prominent in the lowest 200 m. Noting that the vertical gradients of temperature, moisture, and winds over the ocean are generally constant in the lowest 0.5 km of dropsondes, a simple procedure was constructed to adjust the upsonde profiles in the lowest few hundred meters to resemble the atmospheric structures over the open ocean. This procedure was applied to the soundings from the three islands mentioned above for the October–December 2011 period of DYNAMO. As a result of this procedure, the adjusted diurnal cycle amplitude of surface temperature is reduced fivefold, resembling that over the ocean, and low-level wind speeds are increased in ~90% of the island soundings. Examination of the impact of these sounding adjustments shows that dynamical and budget fields are primarily affected by adjustments to the wind field, whereas convective parameters are sensitive to the adjustments in thermodynamic fields. Although the impact of the adjustments is generally small (on the order of a few percent), intraseasonal wind regime changes result in some systematic variations in divergence and vertical motion over the sounding arrays.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Corresponding author: Paul E. Ciesielski, paulc@atmos.colostate.edu
Save