Developing and Validating Heat Exposure Products Using the U.S. Climate Reference Network

J. Jared Rennie North Carolina Institute for Climate Studies, North Carolina State University, Asheville, North Carolina

Search for other papers by J. Jared Rennie in
Current site
Google Scholar
PubMed
Close
,
Michael A. Palecki NOAA/National Centers for Environmental Information, Asheville, North Carolina

Search for other papers by Michael A. Palecki in
Current site
Google Scholar
PubMed
Close
,
Sean P. Heuser North Carolina State Climate Office, Raleigh, North Carolina

Search for other papers by Sean P. Heuser in
Current site
Google Scholar
PubMed
Close
, and
Howard J. Diamond NOAA/Air Resources Laboratory, College Park, Maryland

Search for other papers by Howard J. Diamond in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme heat is one of the most pressing climate risks in the United States and is exacerbated by a warming climate and aging population. Much work in heat health has focused only on temperature-based metrics, which do not fully measure the physiological impact of heat stress on the human body. The U.S. Climate Reference Network (USCRN) consists of 139 sites across the United States and includes meteorological parameters that fully encompass human tolerance to heat, including relative humidity, wind, and solar radiation. Hourly and 5-min observations from USCRN are used to develop heat exposure products, including heat index (HI), apparent temperature (AT), and wet-bulb globe temperature (WBGT). Validation of this product is conducted with nearby airport and mesonet stations, with reanalysis data used to fill in data gaps. Using these derived heat products, two separate analyses are conducted. The first is based on standardized anomalies, which place current heat state in the context of a long-term climate record. In the second study, heat events are classified by time spent at various levels of severity of conditions. There is no consensus as to what defines a heat event, so a comparison of absolute thresholds (i.e., ≥30.0°, 35.0°, and 40.0°C) and relative thresholds (≥90th, 95th, and 98th percentile) will be examined. The efficacy of the product set will be studied using an extreme heat case study in the southeastern United States. While no heat exposure metric is deemed superior, each has their own advantages and caveats, especially in the context of public communication.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-20-0282.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Jared Rennie, jared@ncics.org

Abstract

Extreme heat is one of the most pressing climate risks in the United States and is exacerbated by a warming climate and aging population. Much work in heat health has focused only on temperature-based metrics, which do not fully measure the physiological impact of heat stress on the human body. The U.S. Climate Reference Network (USCRN) consists of 139 sites across the United States and includes meteorological parameters that fully encompass human tolerance to heat, including relative humidity, wind, and solar radiation. Hourly and 5-min observations from USCRN are used to develop heat exposure products, including heat index (HI), apparent temperature (AT), and wet-bulb globe temperature (WBGT). Validation of this product is conducted with nearby airport and mesonet stations, with reanalysis data used to fill in data gaps. Using these derived heat products, two separate analyses are conducted. The first is based on standardized anomalies, which place current heat state in the context of a long-term climate record. In the second study, heat events are classified by time spent at various levels of severity of conditions. There is no consensus as to what defines a heat event, so a comparison of absolute thresholds (i.e., ≥30.0°, 35.0°, and 40.0°C) and relative thresholds (≥90th, 95th, and 98th percentile) will be examined. The efficacy of the product set will be studied using an extreme heat case study in the southeastern United States. While no heat exposure metric is deemed superior, each has their own advantages and caveats, especially in the context of public communication.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-20-0282.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Jared Rennie, jared@ncics.org

Supplementary Materials

    • Supplemental Materials (PDF 146.09 KB)
Save
  • Applequist, S., A. Arguez, I. Durre, M. F. Squires, R. S. Vose, and X. Yin, 2012: 1981–2010 US hourly normals. Bull. Amer. Meteor. Soc., 93, 16371640, https://doi.org/10.1175/BAMS-D-11-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arguez, A., I. Durre, S. Applequist, R. S. Vose, M. F. Squires, X. Yin, R. R. Heim Jr., and T. W. Owen, 2012: NOAA’s 1981–2010 US Climate normals: An overview. Bull. Amer. Meteor. Soc., 93, 16871697, https://doi.org/10.1175/BAMS-D-11-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budd, G. M., 2008: Wet-bulb globe temperature (WBGT)—Its history and its limitations. J. Sci. Med. Sport, 11, 2032, https://doi.org/10.1016/j.jsams.2007.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, A. W., B. F. Zaitchik, J. M. Gohlke, S. Wang, and M. B. Richardson, 2020: Methods for estimating wet bulb globe temperature from remote and low-cost data: A comparative study in central Alabama. GeoHealth, 4, e2019GH000231, https://doi.org/10.1029/2019GH000231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store, accessed 23 May 2020, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Curriero, F. S., K. S. Heiner, J. M. Samet, S. L. Zeger, L. Strug, and J. A. Patz, 2002: Temperature and mortality in 11 cities of the eastern United States. Amer. J. Epidemiol., 155, 8087, https://doi.org/10.1093/aje/155.1.80.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimiceli, V. E., S. F. Piltz, and S. A. Amburn, 2013: Black globe temperature estimate for the WBGT index. IAENG Transactions on Engineering Technologies, H. Kim, S. Ao, and B. Rieger, Eds., Springer, 323–334, https://doi.org/10.1007/978-94-007-4786-9_26.

    • Crossref
    • Export Citation
  • Grundstein, A., and J. Dowd, 2011: Trends in extreme apparent temperatures over the United States, 1949–2010. J. Appl. Meteor. Climatol., 50, 16501653, https://doi.org/10.1175/JAMC-D-11-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grundstein, A., C. Williams, M. Phan, and E. Cooper, 2015: Regional heat safety thresholds for athletics in the contiguous United States. Appl. Geogr., 56, 5560, https://doi.org/10.1016/j.apgeog.2014.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grundstein, A., Y. Hosokawa, and D. J. Casa, 2018: Fatal exertional heat stroke and American football players: The need for regional heat-safety guidelines. J. Athl. Train., 53, 4350, https://doi.org/10.4085/1062-6050-445-16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habeeb, D., J. Vargo, and B. Stone, 2015: Rising heat wave trends in large US cities. Nat. Hazards, 76, 16511665, https://doi.org/10.1007/s11069-014-1563-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajizadeh, R., S. Farhang Dehghan, F. Golbabaei, S. M. Jafari, and M. Karajizadeh, 2017: Offering a model for estimating black globe temperature according to meteorological measurements. Meteor. Appl., 24, 303307, https://doi.org/10.1002/met.1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, M. D., V. Brown, and J. Ferrell, 2017: Assessment of NOAA National Weather Service methods to warn for extreme heat events. Wea. Climate Soc., 9, 513, https://doi.org/10.1175/WCAS-D-15-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heo, S., M. L. Bell, and J. Lee, 2019: Comparison of health risks by heat wave definition: Applicability of wet-bulb globe temperature for heat wave criteria. Environ. Res., 168, 158170, https://doi.org/10.1016/j.envres.2018.09.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holder, C., R. Boyles, A. Syed, D. Niyogi, and S. Raman, 2006: Comparison of collocated automated (NCECONet) and manual (COOP) climate observations in North Carolina. J. Atmos. Oceanic Technol., 23, 671682, https://doi.org/10.1175/JTECH1873.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iowa Environmental Mesonet, 2020: UGC or polygon SBW statistics for watch/warning/advisory by state/wfo (#90). Iowa State University Automated Data Plotter, accessed 12 November 2020, http://mesonet.agron.iastate.edu/plotting/auto/?q=90.

  • Kalkstein, L. S., and R. E. Davis, 1989: Weather and human mortality: An evaluation of demographic and interregional responses in the United States. Ann. Assoc. Amer. Geogr., 79, 4464, https://doi.org/10.1111/j.1467-8306.1989.tb00249.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keellings, D. and H. Moradkhani, 2020: Spatiotemporal evolution of heat wave severity and coverage across the United States. Geophys. Res. Lett., 47, e2020GL087097, https://doi.org/10.1029/2020GL087097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leeper, R. D., J. E. Bell, and M. A. Palecki, 2019: A description and evaluation of U.S. Climate Reference Network standardized soil moisture dataset. J. Appl. Meteor. Climatol., 58, 14171428, https://doi.org/10.1175/JAMC-D-18-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemke, B., and T. Kjellstrom, 2012: Calculating workplace WBGT from meteorological data: A tool for climate change assessment. Ind. Health, 50, 267278, https://doi.org/10.2486/indhealth.MS1352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., R. A. Carhart, P. Lawday, S. Tschopp, and R. Sharp, 2008: Modeling the wet bulb globe temperature using standard meteorological measurements. J. Occup. Environ. Hyg., 5, 645655, https://doi.org/10.1080/15459620802310770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limaye, V. S., J. Vargo, M. Harkey, T. Holloway, and J. A. Patz, 2018: Climate change and heat-related excess mortality in the eastern USA. EcoHealth, 15, 485496, https://doi.org/10.1007/s10393-018-1363-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maier, G., A. Grundstein, W. Jang, C. Li, L. P. Naeher, and M. Shepherd, 2014: Assessing the performance of a vulnerability index during oppressive heat across Georgia, United States. Wea. Climate Soc., 6, 253263, https://doi.org/10.1175/WCAS-D-13-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mora, C., and Coauthors, 2017: Global risk of deadly heat. Nat. Climate Change, 7, 501506, https://doi.org/10.1038/nclimate3322.

  • National Academies of Sciences, Engineering, and Medicine, 2017: Attribution of Extreme Weather Events in the Context of Climate Change. National Academies Press, 186 pp, https://doi.org/10.17226/21852.

    • Crossref
    • Export Citation
  • Nicholls, N., C. Skinner, M. Loughnan, and N. Tapper, 2008: A simple heat alert system for Melbourne, Australia. Int. J. Biometeor., 52, 375384, https://doi.org/10.1007/s00484-007-0132-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nissan, H., K. Burkart, E. Coughlan de Perez, M. Van Aalst, and S. Mason, 2017: Defining and predicting heat waves in Bangladesh. J. Appl. Meteor. Climatol., 56, 26532670, https://doi.org/10.1175/JAMC-D-17-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2020a: Weather related fatality and injury statistics. NOAA, accessed 25 September 2020, https://www.weather.gov/hazstat/.

  • NWS, 2020b: NWS experimental heat risk. NOAA, accessed 25 September 2020, https://www.wrh.noaa.gov/wrh/heatrisk/pdf/HeatRisk_More_Info_Web.pdf.

  • OSHA, 2021: Heat hazard recognition. OSHA, accessed 11 February 2021, https://www.osha.gov/heat-exposure/hazards.

  • Pachauri, R. K., and Coauthors, 2014: Climate Change 2014: Synthesis Report. Cambridge University Press, 151 pp., https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf.

  • Patel, T. S., M. S. Stephen, P. Mullen, and W. R. Santee, 2013: Comparison of methods for estimating wet-bulb globe temperature index from standard meteorological measurements. Mil. Med., 178, 926933, https://doi.org/10.7205/MILMED-D-13-00117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., and L. V. Alexander, 2013: On the measurement of heat waves. J. Climate, 26, 45004517, https://doi.org/10.1175/JCLI-D-12-00383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, C., D. Singh, and R. M. Horton, 2017: Spatiotemporal patterns and synoptics of extreme wet-bulb temperature in the contiguous United States. J. Geophys. Res. Atmos., 122, 13 10813 124, https://doi.org/10.1002/2017JD027140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, C., T. Matthews, and R.M. Horton, 2020: The emergence of heat and humidity too severe for human tolerance. Sci. Adv., 6, eaaw1838, https://doi.org/10.1126/sciadv.aaw1838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, C. E., M. S. O’Neill, C. J. Gronlund, S. J. Brines, D. G. Brown, A. V. Diez-Roux, and J. Schwartz, 2009: Mapping community determinants of heat vulnerability. Environ. Health Perspect., 117, 17301736, https://doi.org/10.1289/ehp.0900683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennie, J., J. E. Bell, K. E. Kunkel, S. Herring, H. Cullen, and A. M. Abadi, 2019: Development of a submonthly temperature product to monitor near-real-time climate conditions and assess long-term heat events in the United States. J. Appl. Meteor. Climatol., 58, 26532674, https://doi.org/10.1175/JAMC-D-19-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, P. J., 2001: On the definition of a heat wave. J. Appl. Meteor., 40, 762775, https://doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothfusz, L. P., 1990: The heat index “equation” (or, more than you ever wanted to know about heat index). NWS Southern Region Headquarters Tech. Attachment SR-90-23, 2 pp., https://wonder.cdc.gov/wonder/help/Climate/ta_htindx.PDF.

  • Sherwood, S. C., 2018: How important is humidity in heat stress? J. Geophys. Res. Atmos., 123, 11 80811 810, https://doi.org/10.1029/2018JD028969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A., N. Lott, and R. Vose, 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, https://doi.org/10.1175/2011BAMS3015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. T., B. F. Zaitchik, and J. M. Gohlke, 2013: Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118, 811825, https://doi.org/10.1007/s10584-012-0659-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1979: The assessment of sultriness. Part I: A temperature–humidity index based on human physiology and clothing science. J. Appl. Meteor., 18, 861873, https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1984: A universal scale of apparent temperature. J. Climate Appl. Meteor., 23, 16741687, https://doi.org/10.1175/1520-0450(1984)023<1674:AUSOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. S., 2011: Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteor. Climatol., 50, 22672269, https://doi.org/10.1175/JAMC-D-11-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaidyanathan, A., S. R. Kegler, S. S. Saha, and J. A. Mulholland, 2016: A statistical framework to evaluate extreme weather definitions from a health perspective: A demonstration based on extreme heat events. Bull. Amer. Meteor. Soc., 97, 18171830, https://doi.org/10.1175/BAMS-D-15-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2014: Improved historical temperature and precipitation time series for U.S. climate divisions. J. Appl. Meteor. Climatol., 53, 12321251, https://doi.org/10.1175/JAMC-D-13-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinberger, K. R., D. Harris, K. R. Spangler, A. Zanobetti, and G. A. Wellenius, 2020: Estimating the number of excess deaths attributable to heat in 297 United States counties. Environ. Epidemiol., 4, e096, https://doi.org/10.1097/EE9.0000000000000096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willett, K. M., and S. Sherwood, 2012: Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol., 32, 161177, https://doi.org/10.1002/joc.2257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wuebbles, D. J., D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock, Eds., 2017: Climate Science Special Report: Fourth National Climate Assessment. Vol. I, U.S. Global Change Research Program, 470 pp., https://doi.org/10.7930/J0J964J6.

    • Crossref
    • Export Citation
  • Yaglou, C. P., and D. Minard, 1957: Control of heat casualties at military training centers. Amer. Med. Assoc. Arch. Ind. Health, 16, 302316.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 447 0 0
Full Text Views 1852 557 20
PDF Downloads 849 254 16